The endosomal/lysosomal transmembrane protein CLN3 is mutated in the Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL). However, the molecular mechanism of JNCL pathogenesis and the exact function of the CLN3 protein have remained unclear. Previous studies have shown that deletion of BTN1, the yeast orthologue of CLN3, leads to increased expression of BTN2. BTN2 encodes Btn2p, a proposed homologue to a novel microtubule-binding protein Hook1, which regulates endocytosis in Drosophila. We analysed here the putative interconnection between CLN3 and Hook1 in the mammalian cells and discovered that overexpression of human CLN3 induces aggregation of Hook1 protein, potentially by mediating its dissociation from the microtubules. Using in vitro binding assay we were able to demonstrate a weak interaction between Hook1 and the cytoplasmic segments of CLN3. We also found receptor-mediated endocytosis to be defective in CLN3-deficient JNCL fibroblasts, connecting CLN3, Hook1 and endocytosis in the mammalian system. Moreover, co-immunoprecipitation experiments showed that Hook1 physically interacts with endocytic Rab7, Rab9 and Rab11, hence delineating a manifold role for mammalian Hook1 in membrane trafficking events. These novel interactions between the microtubule-binding Hook1 and the large family of Rab GTPases also suggest a link between CLN3 function, microtubule cytoskeleton and endocytic membrane trafficking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddh321 | DOI Listing |
Biochem Biophys Res Commun
May 2005
Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Hook1 is a member of a family of microtubule-binding proteins. Studies on the Drosophila homolog of Hook1 have suggested a role in the maturation and trafficking of internalized proteins to the late endosome. A weak interaction between Hook1 and the lysosomal/late endosomal protein, CLN3, was recently reported.
View Article and Find Full Text PDFHum Mol Genet
December 2004
National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, Finland.
The endosomal/lysosomal transmembrane protein CLN3 is mutated in the Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL). However, the molecular mechanism of JNCL pathogenesis and the exact function of the CLN3 protein have remained unclear. Previous studies have shown that deletion of BTN1, the yeast orthologue of CLN3, leads to increased expression of BTN2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!