Bi-directional flow sensor with a wide dynamic range for medical applications.

Med Eng Phys

Lehrstuhl für Strömungsmechanik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, D-91058 Erlangen, Germany.

Published: October 2004

AI Article Synopsis

Article Abstract

This paper describes a novel three-wire thermal flow sensor for medical applications. The present innovation for low-frequency measurements involves the use of a pulsed-wire anemometer with a comparatively large wire diameter (12.5 microm and larger) together with a novel signal processing approach. A small wire is heated using a sinusoidal alternating current, and two sensing wires, acting as resistance thermometers, are set parallel to, and at a small distance on either side of, the pulsed wire. The thermal wake of the pulsed wire is convected downstream to one of the two receiving wires which detect its delayed arrival. This arrangement allows the sensing of both the direction and the flow velocity component normal to the three probes. By appropriate signal processing, the present sensor can be operated such that the phase shift between the periodic current that drives the central wire and the detected signal by either the upstream or downstream wire takes into account a combination of convection, diffusion and the finite thermal response time of both the pulsed wire and the receiving wire. Because the time constants increase as the flow velocity decreases, the time lag due to thermal inertia supplements the time lag due to the true time of flight, thus yielding an effective operating range of 0.05 m/s

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2004.06.002DOI Listing

Publication Analysis

Top Keywords

pulsed wire
12
flow sensor
8
medical applications
8
wire
8
signal processing
8
flow velocity
8
time lag
8
time
5
bi-directional flow
4
sensor wide
4

Similar Publications

Butyrate increases cardiac output and causes vasorelaxation in a healthy porcine model.

Life Sci

January 2025

Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, 8200 Aaarhus N, Denmark.

Background: Butyrate, a short-chain fatty acid, has shown potential to improve left ventricular (LV) function and induce vasorelaxation in rodents. Butyrate may either be produced by the microbiome in the colon, be ingested or administered intravenously. This study aimed to evaluate effects of butyrate on cardiac output (CO) and associated hemodynamic variables in a porcine model.

View Article and Find Full Text PDF

Wire arc additive manufacturing (WAAM) with a special arc mode of cold metal transfer pulse advanced (CMT-PADV) is an ideal additive manufacturing process for fabricating aerospace components, primarily high-strength aluminum alloys, offering advantages such as high deposition rates and low cost. However, the numerical simulation of the CMT-PADV WAAM process has not been researched until now. In this study, we first developed a three-dimensional fluid dynamics model for the CMT-PADV WAAM of 7075 aluminum alloy, aiming at analyzing the droplet transition and molten pool flow.

View Article and Find Full Text PDF

Physical Simulation Experiment on the Rock Breaking Efficiency of Pulse Type Controllable Shock Wave.

ACS Omega

December 2024

Shenmu Ningtiaota Mining Company, Shaanxi Coal and Chemical Industry Group, Shenmu, Shaanxi 719300, China.

Given that conducting controllable shock wave tests in actual rock formations underground in coal mines affects coal mine production with the parameters required for equipment design and incurs significant costs, a series of ground tests were conducted separately. First, the impact of energy storage on rock breaking efficiency was analyzed. Then, physical simulation experiments were conducted on the differential efficiency of controllable shock waves on high-strength cement, sandstone, granite, solid granite, and limestone.

View Article and Find Full Text PDF

Balloon pulmonary angioplasty (BPA) is now a widely accepted treatment for inoperable chronic thromboembolic pulmonary hypertension (CTEPH), but it still faces the problem of high complications. Herein, we report a rare case of severe vagal response during the BPA of a total occlusion lesion in a patient with CTEPH. The patient experienced acute chest pain and dyspnea, accompanied by a significant decrease in heart rate and blood pressure.

View Article and Find Full Text PDF

This study aims to optimize the Wire Electrical Discharge Machining (EDM) process parameters for aluminum 6061 alloy reinforced with Mg and MoS using the Box-Behnken (BBD) design and the non-dominated sorting genetic (NSGA-II) algorithm. The objective is to enhance the machining efficiency and quality of the composite material. The Box-Behnken (BBD) design was utilized to design a set of experiments with varying levels of process parameters, comprising pulse-on time, servo volt, and current.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!