Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In mammals both the regulation of circadian rhythms and photoperiodic responses depend exclusively upon photic information provided by the lateral eyes; however, nonmammalian vertebrates can also rely on multiple extraocular photoreceptors to perform the same tasks. Extraocular photoreceptors include deep brain photoreceptors located in several distinct brain sites and the pineal complex, involving intracranial (pineal and parapineal) and extracranial (frontal organ and parietal eye) components. This review updates the research field of the most recent acquisitions concerning the roles of extraocular photoreceptors on circadian physiology and behavior, particularly photic entrainment and sun compass orientation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/cbi-120039813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!