Accumulation of mutant proteins into misfolded species and aggregates is characteristic for diverse neurodegenerative diseases including the polyglutamine diseases. While several studies have suggested that polyglutamine protein aggregates impair the ubiquitin-proteasome system, the molecular mechanisms underlying the interaction between polyglutamine proteins and the proteasome have remained elusive. In this study, we use fluorescence live-cell imaging to demonstrate that the proteasome is sequestered irreversibly within aggregates of overexpressed N-terminal mutant Huntingtin fragment or simple polyglutamine expansion proteins. Moreover, by direct targeting of polyglutamine proteins for proteasomal degradation, we observe incomplete degradation of these substrates both in vitro and in vivo. Thus, our data reveal that intrinsic properties of the polyglutamine proteins prevent their efficient degradation and clearance. Additionally, fluorescence resonance energy transfer is detected between the proteasome and aggregated polyglutamine proteins indicative of a close and stable interaction. We propose that polyglutamine-containing proteins are kinetically trapped within proteasomes, which could explain their deleterious effects on cellular function over time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524390 | PMC |
http://dx.doi.org/10.1038/sj.emboj.7600426 | DOI Listing |
Methods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.
Huntington's disease (HD) is primarily caused by the aberrant aggregation of the N-terminal exon 1 fragment of mutant huntingtin protein (mHttex1) with expanded polyglutamine (polyQ) repeats in neurons. The first 17 amino acids of the N-terminus of Httex1 (N17 domain) immediately preceding the polyQ repeat domain are evolutionarily conserved across vertebrates and play multifaceted roles in the pathogenesis of HD. Due to its amphipathic helical properties, the N17 domain, both alone and when membrane-associated, promotes mHttEx1 aggregation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biomaterials & Biomedical Technology (BBT), University Medical Centre Groningen (UMCG), Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.
View Article and Find Full Text PDFMol Aspects Med
February 2025
Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy. Electronic address:
Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!