Nanotubes and nanowires with both elemental (carbon or silicon) and multi-element compositions (such as compound semiconductors or oxides), and exhibiting electronic properties ranging from metallic to semiconducting, are being extensively investigated for use in device structures designed to control electron charge. However, another important degree of freedom--electron spin, the control of which underlies the operation of 'spintronic' devices--has been much less explored. This is probably due to the relative paucity of nanometre-scale ferromagnetic building blocks (in which electron spins are naturally aligned) from which spin-polarized electrons can be injected. Here we describe nanotubes of vanadium oxide (VO(x)), formed by controllable self-assembly, that are ferromagnetic at room temperature. The as-formed nanotubes are transformed from spin-frustrated semiconductors to ferromagnets by doping with either electrons or holes, potentially offering a route to spin control in nanotube-based heterostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature02970DOI Listing

Publication Analysis

Top Keywords

spin control
8
room-temperature ferromagnetic
4
nanotubes
4
ferromagnetic nanotubes
4
nanotubes controlled
4
controlled electron
4
electron hole
4
hole doping
4
doping nanotubes
4
nanotubes nanowires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!