Rot1p of Saccharomyces cerevisiae is a putative membrane protein required for normal levels of the cell wall 1,6-beta-glucan.

Microbiology (Reading)

Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan.

Published: October 2004

Although ROT1 is essential for growth of Saccharomyces cerevisiae strain BY4741, the growth of a rot1Delta haploid was partially restored by the addition of 0.6 M sorbitol to the growth medium. Rot1p is predicted to contain 256 amino acids, to have a molecular mass of 29 kDa, and to possess a transmembrane domain near its C-terminus. Candida albicans and Schizosaccharomyces pombe have Rot1p homologues with high identity that also have predicted transmembrane domains. To explore the role of Rot1p, the phenotypes of the rot1Delta haploid were analysed. Deletion of ROT1 caused cell aggregation and an abnormal morphology. Analysis of the cell cycle showed that rot1Delta cells are delayed at the G2/M phase. The rot1Delta cells were resistant to K1 killer toxin and hypersensitive to SDS and hygromycin B, suggesting that they had cell wall defects. Indeed, greatly reduced levels of alkali-soluble and -insoluble 1,6-beta-glucan, and increased levels of chitin and 1,3-beta-glucan, were found in rot1Delta cells. Furthermore, the phenotypes of rot1Delta cells resemble those of disruption mutants of the KRE5 and BIG1 genes, which show greatly reduced levels of cell wall 1,6-beta-glucan. Incorporation of glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in big1Delta and rot1Delta cells was examined using a GFP-Flo1 fusion protein. GFP fluorescence was detected both on the cell surface and in the culture medium, suggesting that, in these mutants, mannoproteins may become only weakly bound to the cell wall and some of these proteins are released into the medium. Electron microscopic analyses of rot1Delta and big1Delta cells showed that the electron-dense mannoprotein rim staining was more diffuse and paler than that in the wild-type, and that the outer boundary of the cell wall was irregular. A big1Deltarot1Delta double mutant had a growth rate similar to the corresponding single mutants, suggesting that Rot1p and Big1p have related functions in 1,6-beta-glucan synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.27292-0DOI Listing

Publication Analysis

Top Keywords

cell wall
24
rot1delta cells
20
cell
9
saccharomyces cerevisiae
8
levels cell
8
wall 16-beta-glucan
8
rot1delta
8
rot1delta haploid
8
phenotypes rot1delta
8
greatly reduced
8

Similar Publications

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Seasonal Pattern of Endo-β-Mannanase Activity During Germination of , Exhibiting Morphophysiological Dormancy.

Plants (Basel)

January 2025

Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.

Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.

View Article and Find Full Text PDF

Cell wall extensibility is a key biophysical characteristic that defines the rate of plant cell growth. It depends on the wall structure and is controlled by numerous proteins that cut and/or (re)form links between the wall constituents. Cell wall extensibility is currently estimated by different in vitro biomechanical tests.

View Article and Find Full Text PDF

Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing.

View Article and Find Full Text PDF

infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in . This review provides a comprehensive analysis of these drugs and their molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!