Neonatal hypoxic-ischaemic (HI) brain injury resulting in encephalopathy is a leading cause of morbidity and mortality with no effective treatment. Here we show that caffeic acid phenethyl ester (CAPE), an active component of propolis, administered either before or after an HI insult, significantly prevents HI-induced neonatal rat brain damage in the cortex, hippocampus and thalamus. In addition to blocking HI-induced caspase 3 activation, CAPE also inhibits HI-mediated expression of inducible nitric oxide synthase and caspase 1 in vivo and potently blocks nitric oxide-induced neurotoxicity in vitro. Furthermore, CAPE directly inhibits Ca2+-induced cytochrome c release from isolated brain mitochondria. Thus, CAPE induces neuroprotection against HI-induced neuronal death, possibly by blocking HI-induced inflammation and/or directly inhibiting the HI-induced neuronal death pathway. CAPE may therefore be a novel effective therapy for preventing neonatal HI injury.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awh316DOI Listing

Publication Analysis

Top Keywords

caffeic acid
8
acid phenethyl
8
phenethyl ester
8
neonatal hypoxic-ischaemic
8
hypoxic-ischaemic brain
8
brain injury
8
blocking hi-induced
8
hi-induced neuronal
8
neuronal death
8
cape
5

Similar Publications

Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).

View Article and Find Full Text PDF

Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.

View Article and Find Full Text PDF

Unlabelled: This research aimed to assess the biological characteristics of both submerged culture mycelium and artificial basidioma of NTH-PL4. The extraction yield from the basidioma surpassed that of the mycelium. The use of hot water extract resulted in the highest total carbohydrate content, predominantly found in the basidioma.

View Article and Find Full Text PDF

Sorghum () is a gluten-free supercrop with a high content of phenolic compounds, along with anti-nutrient factors such as tannin that limit its use in food. In this study, we conducted solid-state fermentation for sorghum with to reduce the tannin content and value-added sorghum by enhancing biological properties. The results showed that fermented sorghum had 1.

View Article and Find Full Text PDF

The invasion and metastasis of cancer cells transform localized cancers into systemic and life-threatening diseases, posing one of the most significant challenges in cancer treatment. This study tested the hypothesis that combined treatment with Caffeic acid (CA) and metformin (MTF) could inhibit or reduce effective signaling pathways involved in the proliferation, survival, and metastasis of MCF-7 breast cancer cells. Anti-proliferation analysis determined the IC50 values for MTF (4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!