The purposes of the present study were to investigate the effects of feeding a cereal grain containing NSP on body growth and the intestinal microenvironment of recently weaned pigs, and to examine resultant associations with pathogenic Escherichia coli in the intestinal tract. In Expt 1, pearl barley, a grain rich in soluble NSP, was incorporated (250, 500 or 750 g/kg diet) into a low-fibre control diet based on cooked white rice and fed for 7-10 d following weaning. Consumption of pearl barley did not significantly alter piglet live-weight gain compared with the control cooked rice diet, but it accelerated large intestinal growth and fermentation, decreased ileal starch digestibility and increased intestinal viscosity. Expt 2 was conducted to determine whether these differences would favour proliferation of enterotoxigenic E. coli, the bacterium causing post-weaning colibacillosis (PWC). Three groups of pigs were weaned onto diets based on cooked white rice, rice with 500 g pearl barley/kg, or rice with 500 g pearl barley/kg supplemented with exogenous enzymes (Porzyme 8100; Danisco, Marlborough, Wilts., UK). Pigs were inoculated orally with haemolytic E. coli serovar O8;K87;K88 after weaning. Animals eating the pearl barley had increased viscosity of the intestinal contents, greater intestinal colonisation with the E. coli strain and more diarrhoea than pigs fed the rice-only diet. The enzymes did not reduce viscosity or protect from PWC. The results suggest that pearl barley alters the intestinal microenvironment and predisposes to PWC, whilst a low-viscosity, highly digestible diet based on cooked white rice is protective.

Download full-text PDF

Source
http://dx.doi.org/10.1079/bjn20041206DOI Listing

Publication Analysis

Top Keywords

pearl barley
20
based cooked
12
cooked white
12
white rice
12
intestinal
8
viscosity intestinal
8
intestinal contents
8
starch digestibility
8
post-weaning colibacillosis
8
intestinal microenvironment
8

Similar Publications

One current challenge in sustainable agriculture is to redesign cropping systems to reduce the use and impacts of pesticides, and by doing so protect the environment, in particular groundwater, and human health. As a large range of systems could be explored and a wide number of pesticides used, field experiments cannot be carried out to study the sustainability of each of them. Thus, the objectives of this work were (1) to measure water flows and pesticide leaching in six contrasted low input cropping systems based on sunflower-wheat rotation, oilseed rape-wheat-barley rotation, and maize monoculture, experimented for three years in three different soil and climatic conditions, and (2) to assess and to compare the ability of three pesticide fate models (MACRO, PEARL, PRZM) to simulate the observed water flows and pesticide concentrations.

View Article and Find Full Text PDF

Green technology, encompassing sustainable practices in food production, extends to dietary fiber extraction. This study aimed to enhance dietary fiber extraction from the selected barley varieties (Jou-17, Sultan-17, and Pearl-21) using the ultrasonic-assisted extraction (UAE) technique. This process involved washing, drying, de-fatting (using ethanol as green solvent), and protein removal steps.

View Article and Find Full Text PDF

Background: The issue of human mental health is gaining more and more attention nowadays. However, most mental disorders are treated with antipsychotic drugs that cause weight gain and metabolic disorders, which include olanzapine (OLZ). The search for and development of natural compounds for the prevention of obesity when taking antipsychotic drugs is an urgent task.

View Article and Find Full Text PDF

Background: Salt tolerance in plants is defined as their ability to grow and complete their life cycle under saline conditions. Staple crops have limited salt tolerance, but forage grass can survive in large unexploited saline areas of costal or desert land. However, due to the restriction of self-incompatible fertilization in many grass species, vegetative propagation via stem cuttings is the dominant practice; this is incompatible with current methodologies of salt-tolerance phenotyping, which have been developed for germination-based seedling growth.

View Article and Find Full Text PDF

Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by antioxidant activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!