Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The heats of adsorption of two linear CO species adsorbed on the Au degrees particles (denoted L(Au degrees)) and on the Ti(+delta) sites (denoted L(Ti+delta)) of a 1% Au/TiO(2) catalyst are determined as the function of their respective coverage by using the AEIR procedure (adsorption equilibrium infrared spectroscopy) previously developed. Mainly, the evolutions of the IR band area of each adsorbed species (2184 cm(-1) for L(Ti+delta) and at 2110 cm(-1) for L(Au degrees)) as a function of the adsorption temperature T(a), at a constant CO adsorption pressure P(CO), provide the evolutions of the coverages theta(LTi+delta) and theta(LAu degrees ) of each adsorbed CO species with T(a) in isobar conditions that give the individual heats of adsorption. It is shown that they linearly vary from 74 to 47 kJ/mol for L(Au degrees ) and from 50 to 40 kJ/mol for L(Ti+delta) at coverages 0 and 1, respectively. These values are consistent with literature data on model Au particles and TiO(2). In particular, it is shown that the mathematical formalism supporting the AEIR procedure can be applied to literature data on Au-containing solids (single crystals and model particles).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0470719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!