The in situ click chemistry approach to lead discovery employs the biological target itself for assembling inhibitors from complementary building block reagents via irreversible connection chemistry. The present publication discusses the optimization of this target-guided strategy using acetylcholinesterase (AChE) as a test system. The application of liquid chromatography with mass spectroscopic detection in the selected ion mode for product identification greatly enhanced the sensitivity and reliability of this method. It enabled the testing of multicomponent mixtures, which may dramatically increase the in situ screening throughput. In addition to the previously reported in situ product syn-TZ2PA6, we discovered three new inhibitors, syn-TZ2PA5, syn-TA2PZ6, and syn-TA2PZ5, derived from tacrine and phenylphenanthridinium azides and acetylenes, in the reactions with Electrophorus electricus and mouse AChE. All in situ-generated compounds were extremely potent AChE inhibitors, because of the presence of multiple sites of interaction, which include the newly formed triazole nexus as a significant pharmacophore.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja046382g | DOI Listing |
Polymers (Basel)
December 2024
Key Laboratory of Cluster Science of Ministry of Education & School of Chemistry, Beijing Institute of Technology, Beijing 100081, China.
Cross-linked polyethylene (XLPE) is applied in most advanced high-voltage direct-current (HVDC) power cable insulations, which are produced via dicumyl peroxide (DCP) technology. The electrical conductivity of insulation material can be increased by cross-linking byproducts from the DCP process. Hence, currently much attention is being paid to a new process to produce cross-linking byproduct-free XLPE.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland.
mSphere
December 2024
Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both and in the dextran sodium sulfate (DSS) mouse model of colitis.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China. Electronic address:
The widely recognized phytohormone, salicylic acid (SA), serves not only as an exogenous additive for fruits and vegetables but, more crucially, as an in vivo regulator of the entire plant growth process. Consequently, it is essential to achieve both in vitro detection and in vivo imaging analysis of the plant hormone SA. In this study, a biocompatible supramolecular probe was crafted using a "label-free" SA aptamer as the host for an aggregation-induced emission (AIE) organic small molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!