Osteogenesis occurs in porous hydroxyapatite (HA) when porous HA blocks combined with marrow mesenchymal cells are grafted in vivo. In vitro bone formation occurs in HA pores when HA combined with marrow cells is cultured in osteogenic medium containing dexamethasone. This cultured bone/HA construct possesses higher osteogenic ability when it is grafted in vivo. In the present study, we compared the osteogenic potential of a cultured bone/HA construct with that of a marrow mesenchymal cell/HA composite. Marrow cells were obtained from the femoral bone shaft of 7-week-old, male Fischer 344 rats and were cultured in T-75 flasks. Cells were concentrated, then frozen and stored in liquid nitrogen for 6 months. The cryopreserved cells were then thawed and prepared for subculture in porous HA (5 x 5 x 5 mm, Interpore 500) and for implantation with porous HA. After 2 weeks of subculture, three cultured bone/HA constructs were separately implanted in the right side of the back of each syngeneic 7-week-old male Fischer rat, and three thawed cell/HA composites (without subculture) were separately implanted in the left side. These implants were harvested at 2 or 4 weeks postimplantation, and prepared for histological, biochemical, and genetic analysis. Alkaline phosphatase activity and osteocalcin content of cultured bone/HA constructs were much higher than those of the cell/HA composites at 2 and 4 weeks postimplantation. Histological examination and gene expression data agreed with these findings. The culture technique discussed herein should facilitate the development of biosynthetic bone implants with higher osteogenic capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/000000004783983873 | DOI Listing |
Mater Sci Eng C Mater Biol Appl
May 2019
Nanobioengineering Division, Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran. Electronic address:
In this research, novel monticellite/hydroxyapatite (HA) ceramic composites were successfully prepared by mechanical method. The ability of nanostructured monticellite-based ceramic composites to form a suitable bond to living hard tissues, and stimulate osteoblast-like cells proliferation may be different for various ratios of the reinforcement to monticellite matrix. The differences in physico-chemical characteristics, bone-like apatite formation, cytocompatibility, cell viability and in vitro osteogenic activity of nanostructured monticellite/HA ceramic composites were explored.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2018
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China. Electronic address:
In the process of bone regeneration, relatively early biological events including inflammatory response, angiogenesis, or stem cell homing, help the accompanying target actions of cell differentiation and calcification. Herein, we proposed a novel cell-guided tissue engineering system based on a surface-functionalized porous hydroxyapatite (HA) scaffolds with the ability to recruit cells and accelerate the differentiation of them along the osteoblastic lineage for optimizing large-sized bone defect repair. Inspired by microstructural properties of natural bone, HA scaffolds similar to the trabecular bone structure were prepared via a sugar sphere leaching technique, in which the inter-pore opening size was controllable.
View Article and Find Full Text PDFInt J Oral Maxillofac Implants
June 2017
Purpose: To evaluate the biochemical composition of bone nodules deposited by gingival mesenchymal stem cells (GMSCs) over titanium machined surfaces in vitro.
Materials And Methods: GMSCs were isolated from healthy gingival tissues of patients undergoing crown-lengthening surgical procedures. GMSCs were characterized following the International Society for Cellular Therapy guidelines.
PLoS One
May 2017
Laboratoire de Chimie Physiologique - URPhyM, University of Namur, Namur, Belgium.
Osteoclasts are giant bone-resorbing cells originating from monocytes/macrophages. During their differentiation, they overexpress two lysosomal enzymes, cathepsin K and TRAP, which are secreted into the resorption lacuna, an acidified sealed area in contact with bone matrix where bone degradation takes place. Here we report that the acid hydrolase HYAL1, a hyaluronidase able to degrade the glycosaminoglycans hyaluronic acid (HA) and chondroitin sulfate, is also upregulated upon osteoclastogenesis.
View Article and Find Full Text PDFJ Control Release
February 2012
Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
In order to assess the therapeutic efficacy of an antiresorptive drug with imparted bone targeting potential using bisphosphonate (BP) conjugation and an improved pharmacokinetic profile using PEGylation, we synthesized, characterized and evaluated in vivo efficacy of bone-targeting PEGylated salmon calcitonin (sCT) analog (sCT-PEG-BP). sCT-PEG-BP was compared with non-PEGylated bone targeting sCT analog (sCT-BP) and unmodified, commercially available sCT. sCT-PEG-BP conjugates were characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!