A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods. | LitMetric

Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods.

J Air Waste Manag Assoc

Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, USA.

Published: September 2004

This study compares an indoor-outdoor air-exchange mass balance model (IO model) with a chemical mass balance (CMB) model. The models were used to determine the contribution of outdoor sources and indoor resuspension activities to indoor particulate matter (PM) concentrations. Simultaneous indoor and outdoor measurements of PM concentration, chemical composition, and air-exchange rate were made for five consecutive days at a single-family residence using particle counters, nephelometers, and filter samples of integrated PM with an aerodynamic diameter of less than or equal to 2.5 microm (PM2.5) and PM with an aerodynamic diameter of less than or equal to 5 microm (PM5). Chemical compositions were determined by inductively coupled plasma mass-spectrometry. During three high-activity days, prescribed activities, such as cleaning and walking, were conducted over a period of 4-6 hr. For the remaining two days, indoor activities were minimal. Indoor sources accounted for 60-89% of the PM2.5 and more than 90% of the PM5 for the high-activity days. For the minimal-activity days, indoor sources accounted for 27-47% of PM2.5 and 44-60% of the PM5. Good agreement was found between the two mass balance methods. Indoor PM2.5 originating outdoors averaged 53% of outdoor concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2004.10470983DOI Listing

Publication Analysis

Top Keywords

mass balance
16
indoor
9
indoor particulate
8
particulate matter
8
balance methods
8
aerodynamic diameter
8
diameter equal
8
equal microm
8
high-activity days
8
days indoor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!