AI Article Synopsis

  • The study examines three methods (mixing, absorption, and a combination of both) for preparing drug-loaded microcapsules using alginate, poly-L-arginine, and chitosan.
  • The absorption method significantly increases drug loading, achieving a maximum drug load of 19.9% and an encapsulation efficiency of 93.8% when combined with mixing.
  • Different methods affect drug release kinetics, with mixing yielding zero-order kinetics, absorption resulting in first-order kinetics, and the combined method showing a transition from first-order to zero-order kinetics after 18 hours.

Article Abstract

The drug-loaded alginate/poly-L-arginine/chitosan ternary complex microcapsules were prepared by mixing method, absorption method and the combined method of mixing and absorption, respectively. The effect of drug-loading methods on drug load, the encapsulation efficiency and the release properties of the complex microcapsules were investigated. The results showed that the absorption process is a dominating factor to greatly increase the drug load of Hb into microcapsules. Upon loading Hb into microcapsules by combined method of mixing and absorption, the drug load (19.9%) is up to the maximum value, and the encapsulation efficiency is 93.8%. Moreover, the drug release is a zero-order kinetics process for the ternary complex microcapsules made by mixing. For the complex microcapsules made by absorption, the drug release is a first-order kinetics. However, for the complex microcapsules made by combining the mixing and the absorption, the drug release obeys a first-order kinetics during the first eighteen hours, changing afterwards to a zero-order kinetics process. Effect of drug-loading methods on drug load and encapsulation efficiency of alginate/poly-L-arginine/chitosan ternary complex microcapsules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.200300043DOI Listing

Publication Analysis

Top Keywords

complex microcapsules
28
drug load
20
encapsulation efficiency
16
ternary complex
16
drug-loading methods
12
methods drug
12
load encapsulation
12
alginate/poly-l-arginine/chitosan ternary
12
mixing absorption
12
absorption drug
12

Similar Publications

Microcapsule-Containing Self-Reporting Materials Based on Donor-acceptor Stenhouse Adducts.

ACS Macro Lett

January 2025

Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China.

The microcapsule-containing self-reporting system has attracted attention for its excellent characteristics in visualizing microdamage. In this study, we developed self-reporting materials based on the formation of donor-acceptor Stenhouse adducts (DASA) from microcapsules containing Meldrum's acid furfural conjugate (MAFC). Under mechanical force, MAFC is released from broken microcapsules and forms highly colored DASA with secondary amines in the matrix to indicate the small cracks or deformations.

View Article and Find Full Text PDF

The construction of a double-layer colon-targeted delivery system based on zein-shellac complex and gelatin-isomaltooligosaccharide Maillard product: In vitro and in vivo evaluation.

Food Res Int

January 2025

College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China. Electronic address:

In this study, we developed a double-layer colon-targeted microcapsule. It used the Maillard product of gelatin-isomaltooligosaccharide (GI180) and zein-shellac complex (ZS) as bio-based materials, plant extracts (MPL) and Lactobacillus plantarum JJBYG12 (JJBYG12) were co-encapsulated, endowing them with strong resistance to harsh environments and precise intestinal adhesion and targeting ability. The research results indicated that ZS11 exhibits hydrogen bonding and electrostatic interactions.

View Article and Find Full Text PDF

Simplified process for preparing native and depolymerized capsular polysaccharides of Streptococcus pneumoniae.

Carbohydr Polym

March 2025

Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:

Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.

View Article and Find Full Text PDF

Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications.

Nanomicro Lett

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin.

View Article and Find Full Text PDF

Gastrointestinal and colonic bioaccessibility of calcium and ferulic acid from microcapsules made with brewer spent grain arabinoxylans.

Int J Biol Macromol

December 2024

Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina. Electronic address:

Three microcapsule formulations with 2.7, 5.5 and 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!