The effect of irradiation, in the wavelength range of 310-800 nm, on aqueous solutions (pH = 7.4) of alginate in the presence of the photosensitizer riboflavin (RF) has been investigated with the aid of dynamic light scattering (DLS). Under aerobic conditions light irradiation of RF causes scission of the polymer chains which affects the polymer dynamics. The time correlation data obtained from DLS experiments showed at all conditions the existence of two relaxation modes: one single exponential at short times, followed by a stretched exponential at longer times. The slow relaxation time revealed, over the whole considered concentration range, lower values for the alginate/RF system, whereas no effect of photochemical degradation was observed for the fast relaxation time in the semidilute regime. The results suggest that the photochemically induced fragmentation of alginate affects the slow relaxation mode, associated with disengagement relaxation of individual chains or cluster relaxation, in a similar way as the zero-shear viscosity. These findings provide detailed insight into the dynamics of the polymer matrix, and this knowledge can be useful in the context of controlled-release delivery of drugs. The chemical units of alginate (M = mannuronic acid and G = guluronic acid).

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.200300048DOI Listing

Publication Analysis

Top Keywords

aqueous solutions
8
solutions alginate
8
dynamic light
8
light scattering
8
slow relaxation
8
relaxation time
8
relaxation
6
characterization riboflavin-photosensitized
4
riboflavin-photosensitized changes
4
changes aqueous
4

Similar Publications

Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1,3)-Dione in the Gas Phase and in Water.

J Phys Chem A

January 2025

Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.

The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.

View Article and Find Full Text PDF

In this study, an optical sensor, JA/(2,6-di((E)-benzylidene)cyclohexan-1-one), was synthesized and characterized using H NMR and FT-IR spectroscopy. The sensor exhibited high efficiency and selectivity in detecting Pb ions, even in the presence of potential interfering ions such as Mn, Cu, Co, Cr, Ni, Ce, Hg, and Cd in aqueous solutions. The interaction of JA with Pb resulted in a significant enhancement of fluorescence intensity, suggesting the formation of a stable complex.

View Article and Find Full Text PDF

The selection of a biomaterial plays a very important role for the development of scaffolds for biomedical applications. Amidst, the development of nanofibrous scaffolds through electrospinning technique by selecting a suitable polymer is of more importance. Poly (2-ethyl-2-oxazoline) (PEOX) is one among the selected polymers that can be employed for electrospinning for the development of scaffolds for biomedical applications.

View Article and Find Full Text PDF

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.

View Article and Find Full Text PDF

Selective Removal of Highly Toxic Selenite by a Biobased Zirconium-Polyphenolic Supramolecular Gel.

Inorg Chem

January 2025

State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.

The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!