Efficient boron removal by using mesoporous matrices grafted with saccharides.

Chem Commun (Camb)

GDDS, Departamento de Química, Universidad Politécnica de Valencia, Camino Vera s/n 46071, Valencia, Spain.

Published: October 2004

Highly efficient boron removal from water was achieved by using mesoporous silica materials functionalised with saccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b406611aDOI Listing

Publication Analysis

Top Keywords

efficient boron
8
boron removal
8
removal mesoporous
4
mesoporous matrices
4
matrices grafted
4
grafted saccharides
4
saccharides highly
4
highly efficient
4
removal water
4
water achieved
4

Similar Publications

Diels-Alder Reactions of Boron-Substituted Furans with -Phenylmaleimide: Strategies for Tuning the Reactivity and Selectivity.

J Org Chem

January 2025

Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.

The Diels-Alder reactions of boron-substituted furans with -phenylmaleimide have been investigated experimentally and computationally. In contrast to previous results with maleic anhydride, in this case potassium 3-furanyltrifluoroborate and the analogue at C-2 reacted efficiently, giving the [4 + 2] cycloadducts at room temperature with high yields. The diastereoisomer was obtained exclusively for the latter, while its C-3 counterpart showed variable / diastereoselectivities.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

A three-component cascade boronation-dearomatization reaction of alkenes, a diboron compound, and a pyridinium salt is diclosed, affording chiral boron-containing 1,4-dihyropyridines in high yields (≤98%) and diastereoselectivity (≤10:1 dr), along with excellent enantioselectivity (typically >99% ee). The catalytic system performs efficiently at low catalyst loadings (1 mol %) and was tested with >50 examples, including some biologically active molecules.

View Article and Find Full Text PDF

Fluorescence spectra of single terrylene molecules adsorbed on hexagonal boron nitride flakes were recorded at cryogenic temperatures. The pure electronic transitions of terrylene molecules are spread over a broad energy scale from 570 to 610 nm. Surprisingly, peaks in the vibrationally resolved fluorescence spectrum show intensity variations of ≤20-fold between molecules.

View Article and Find Full Text PDF

Recent progress in electrochemical recycling of waste NdFeB magnets.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!