This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/w04-035 | DOI Listing |
Sci Adv
January 2025
Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892.
Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Departments of Ophthalmology and Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine;
Due to its anatomical and physiological similarities to the human eye, the porcine eye serves as a robust model for biomedical research and ocular toxicity assessment. An air/liquid corneal culture system using porcine eyes was developed, and ex vivo epithelial wound healing was utilized as a critical parameter for these studies. Fresh pig corneas were processed for organ culture, with or without epithelial wounding.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!