Development of an autocrine neuregulin signaling loop with malignant transformation of human breast epithelial cells.

Cancer Res

Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.

Published: October 2004

Neuregulin (NRG) is a heparin-binding factor that activates members of the epidermal growth factor family of tyrosine kinase receptors including erbB2 that is overexpressed in more aggressive types of breast cancer. The exact role that NRG plays in breast cancer is complicated by the fact that NRG has been shown to have both proliferative and antiproliferative effects, depending on the breast cancer cell line used. Using an isogenic series of breast epithelial cell lines (MCF10A) ranging from benign to malignant, we found that the actions of NRG changed from antiproliferative to proliferative as the cells progress to cancer. This correlated with a progressive inability of NRG to down-regulate a group of proliferation genes identified previously using cDNA microarrays. As the cells progress to malignancy, they expressed higher levels of erbB2 and lower levels of erbB3 and secreted high levels of NRG into the culture media, resulting in high basal levels of erbB receptor phosphorylation. Disruption of this autocrine signaling loop by blocking ligand-induced receptor activation inhibited cancer cell proliferation. These results demonstrate that the transition of MCF10A cells from normal to premalignant to malignant correlates with the development of a constitutively active autocrine NRG signaling loop that promotes cell proliferation and suggest that disrupting this autocrine loop may provide an important therapeutic measure to control breast cancer cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-1152DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
signaling loop
12
cancer cell
12
breast epithelial
8
cells progress
8
cell proliferation
8
nrg
7
breast
6
cancer
6
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!