Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi.

J Bacteriol

Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA.

Published: October 2004

In a process called quorum sensing, bacteria communicate using extracellular signal molecules termed autoinducers. Two parallel quorum-sensing systems have been identified in the marine bacterium Vibrio harveyi. System 1 consists of the LuxM-dependent autoinducer HAI-1 and the HAI-1 sensor, LuxN. System 2 consists of the LuxS-dependent autoinducer AI-2 and the AI-2 detector, LuxPQ. The related bacterium, Vibrio cholerae, a human pathogen, possesses System 2 (LuxS, AI-2, and LuxPQ) but does not have obvious homologues of V. harveyi System 1. Rather, System 1 of V. cholerae is made up of the CqsA-dependent autoinducer CAI-1 and a sensor called CqsS. Using a V. cholerae CAI-1 reporter strain we show that many other marine bacteria, including V. harveyi, produce CAI-1 activity. Genetic analysis of V. harveyi reveals cqsA and cqsS, and phenotypic analysis of V. harveyi cqsA and cqsS mutants shows that these functions comprise a third V. harveyi quorum-sensing system that acts in parallel to Systems 1 and 2. Together these communication systems act as a three-way coincidence detector in the regulation of a variety of genes, including those responsible for bioluminescence, type III secretion, and metalloprotease production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522208PMC
http://dx.doi.org/10.1128/JB.186.20.6902-6914.2004DOI Listing

Publication Analysis

Top Keywords

parallel quorum-sensing
8
quorum-sensing systems
8
vibrio harveyi
8
bacterium vibrio
8
harveyi system
8
system consists
8
analysis harveyi
8
cqsa cqss
8
harveyi
7
system
6

Similar Publications

Potential roles of quorum quenching in microbial aggregates during wastewater treatment.

Bioresour Technol

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Quorum sensing-regulated microbial behaviors often negatively impact wastewater treatment, leading to issues such as biofouling in membrane bioreactors, filamentous bulking, and resistance gene transfer. Quorum quenching, which counteracts quorum sensing, offers a promising strategy to mitigate these problems. This review aims to highlight overlooked perspectives for its application in microbial aggregates during wastewater treatment.

View Article and Find Full Text PDF

N-acyl-homoserine-lactones as a critical factor for biofilm formation during the initial adhesion stage in drinking water distribution systems.

Environ Pollut

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:

The N-acyl-homoserine-lactone (AHLs)-mediated quorum sensing (QS) system is crucial for the coordination of microbial behaviors within communities. However, the levels of AHLs in biofilms in drinking water distribution systems (DWDSs) and their impact on biofilm formation remain poorly understood. Herein, we simulated DWDSs via biofilm reactors to explore the presence and influence of AHLs during the initial stages of biofilm formation on pipe walls.

View Article and Find Full Text PDF

Lichen and Its Microbiome as an Untapped Source of Anti-Biofilm Compounds.

Chem Biodivers

November 2024

Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722, Université de Limoges, Limoges, France.

Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms.

View Article and Find Full Text PDF

Quorum sensing (QS) is a cell-to-cell communication process that enables bacteria to coordinate group behaviors. In colonies, a program of spatial-temporal cell death is among the QS-controlled traits. Cell death occurs in two phases, first along the colony rim, and subsequently, at the colony center.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that the master QS regulator, HapR, does not control the cell death mechanism directed by the type VI secretion system (T6SS) but instead activates a separate operon of four unknown genes that drive cell death in colonies.
  • * This discovery indicates that bacteria possess an alternative pathway for cell death independent of T6SS, enhancing our understanding of bacterial cell death mechanisms and their role in community structure.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!