Gram-negative bacteria are inherently impermeable to hydrophobic compounds, due to the synergistic activity of the permeability barrier imposed by the outer membrane and energy dependent efflux systems. The gram-negative, enteric pathogen Vibrio cholerae appears to be deficient in both these activities; the outer membrane is not an effective barrier to hydrophobic permeants, presumably due to the presence of exposed phospholipids on the outer leaflet of the outer membrane, and efflux systems are at best only partially active. When V. cholerae was grown in the presence of bile, entry of hydrophobic compounds into the cells was significantly reduced. No difference was detected in the extent of exposed phospholipids on the outer leaflet of the outer membrane between cells grown in the presence or absence of bile. However, in the presence of energy uncouplers, uptake of hydrophobic probes was comparable between cells grown in the presence or absence of bile, indicating that energy-dependent efflux processes may be involved in restricting the entry of hydrophobic permeants into bile grown cells. Indeed, an efflux system(s) is essential for survival of V. cholerae in the presence of bile. Expression of acrAB, encoding an RND family efflux pump, was significantly increased in V. cholerae cells grown in vitro in the presence of bile and also in cells grown in rabbit intestine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522216 | PMC |
http://dx.doi.org/10.1128/JB.186.20.6809-6814.2004 | DOI Listing |
J Cell Sci
January 2025
Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany.
The actin-based motor myosin-19 (Myo19) exerts force on mitochondrial membrane receptors Miro1/2, influencing endoplasmic reticulum (ER)-mitochondria contact sites and mitochondrial cristae structure. The Mitochondrial Intermembrane Bridging (MIB) complex connects the outer and inner mitochondrial membranes at the cristae junction through the MICOS system. However, the interaction between Myo19, Miro1/2, and the MIB/MICOS complex in cristae regulation remains unclear.
View Article and Find Full Text PDFFront Microbiol
January 2025
College Food Science and Light Industry, Nanjing Tech University, Nanjing, China.
A colloidal gold immunochromatographic assay (ICA) based on a dual-antibody sandwich method was developed for the rapid and convenient detection of () antigens in the early stages of infection. Monoclonal antibodies designed as 5B3 targeting the conserved region of 56 kDa outer membrane protein in various strains of were generated through cell fusion and screening techniques and combined with previously prepared polyclonal antibodies as detection antibodies to establish the ICA. Colloidal gold and polyclonal antibody-colloidal gold complexes were synthesized under optimized conditions.
View Article and Find Full Text PDFNat Commun
January 2025
College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China.
Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France. Electronic address:
Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!