In this study, a GlcNAc-6-O-Sulfotransferase, NodST and its complexation with the substrate 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the inhibitor 3'-phosphoadenosine 5'-phosphate (PAP) were studied using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. In addition, using isotopically labeled substrate, we have successfully confirmed a sulfated enzyme intermediate, which was predicted by the MS kinetic measurement. It is also shown that information regarding solution binding affinities can be obtained using electrospray ionization (ESI)-FTICR mass spectrometry. The relative binding constants, Kd(PAPS)/Kd(PAP), derived from the solution and gas phase were very similar, which suggests that the binding domain of this particular enzyme system, given known structures of other sulfotransferases, may be preserved during the transmission of the complex from solution to the gas phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2004.06.002DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
electrospray ionization
8
solution gas
8
gas phase
8
characterization noncovalent
4
noncovalent protein-ligand
4
protein-ligand complexes
4
complexes associated
4
associated enzyme
4
enzyme intermediates
4

Similar Publications

Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.

View Article and Find Full Text PDF

Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.

View Article and Find Full Text PDF

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to interrogate protein structure and dynamics. With the ability to study almost any protein without a size limit, including intrinsically disordered ones, HDX-MS has shown fast growing importance as a complement to structural elucidation techniques. Current experiments compare two or more related conditions (sequences, interaction partners, excipients, conformational states, etc.

View Article and Find Full Text PDF

Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism.

View Article and Find Full Text PDF

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!