IncI1 plasmid R64 encodes type IV pili or thin pili, which contain PilV adhesins. The C-terminal segments of PilV adhesins are exchanged into seven types by shufflon multiple DNA inversion. PilV adhesins determine recipient specificity in R64 liquid matings through the recognition of lipopolysaccharides (LPSs) on the surface of recipient cells. Using various waa mutants of Escherichia coli R1 as recipient cells, liquid mating experiments suggest that PilVA adhesin recognizes the GlcNAc(beta1-3)Glc moiety of E.coli R1 type LPS. The direct binding of PilV adhesins to LPSs of the recipient bacterial strains was demonstrated using filter overlay assays. The specificity of PilV-LPS binding is in close agreement with the recipient specificity determined by R64 liquid matings. The C-terminal segments of PilVA, PilVC, PilVC', and PilVD' adhesins were expressed as fusion proteins with glutathione-S-transferase (GST). GST-A, GST-C, GST-C', and GST-D' proteins bound to their respective LPSs with the specificities identical with those determined in the R64 liquid matings, indicating that the C-terminal segments of PilV adhesins bind to specific moieties of LPS molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.08.059 | DOI Listing |
Commun Biol
November 2023
Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
Sheng Wu Gong Cheng Xue Bao
January 2023
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Antimicrobial resistance has become a major public health issue of global concern. Conjugation is an important way for fast spreading drug-resistant plasmids, during which the type Ⅳ pili plays an important role. Type Ⅳ pili can adhere on the surfaces of host cell and other medium, facilitating formation of bacterial biofilms, bacterial aggregations and microcolonies, and is also a critical factor in liquid conjugation.
View Article and Find Full Text PDFMicrobiol Spectr
April 2022
Département de biologie, Faculté des sciences, Université de Sherbrookegrid.86715.3d, Sherbrooke, Quebec, Canada.
Type IV pili (T4P) are common bacterial surface appendages involved in different biological processes such as adherence, motility, competence, pathogenesis, and conjugation. In this work, we describe the T4P of TP114, an IncI2 enterobacterial conjugative plasmid recently shown to disseminate at high rates in the mouse intestinal tract. This pilus is composed of the major PilS and minor PilV pilins that are both important for conjugation in broth and in the gut microbiota but not on a solid support.
View Article and Find Full Text PDFmBio
February 2022
Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.
The opportunistic pathogen Pseudomonas aeruginosa relies upon type IV pili (Tfp) for host colonization and virulence. Tfp are retractile surface appendages that promote adherence to host tissue and mediate twitching motility, a form of surface-associated translocation. Tfp are composed of a major structural pilin protein (PilA), several less abundant, fiber-associated pilin-like proteins (FimU, PilV, PilW, PilX, and PilE), and a pilus-associated tip adhesin and surface sensor (PilY1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Faculté de Médecine, Université de Paris, Paris 75006, France;
utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!