In situ approaches to establish colloidal growth kinetics.

J Colloid Interface Sci

School of Engineering and Science, International University Bremen, Campus Ring 8, Bremen 28759, Germany.

Published: November 2004

A technique based on the back scattering phenomenon of dynamic light scattering has been employed to monitor the kinetics of gold and platinum metal nanoparticle growth and silver nanoparticle oxidation as well as in the determination of particle sizes ranging from 1 to 200 nm in diameter. The systems were chosen to examine the applicability of dynamic light scattering to nanoresearch over a broad range of sizes as well as both metallic and nonmetallic systems. The advantages of this instrumentation over traditional instruments such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) have been highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2004.06.086DOI Listing

Publication Analysis

Top Keywords

dynamic light
8
light scattering
8
electron microscopy
8
situ approaches
4
approaches establish
4
establish colloidal
4
colloidal growth
4
growth kinetics
4
kinetics technique
4
technique based
4

Similar Publications

Assembly Graph as the Rosetta Stone of Ecological Assembly.

Environ Microbiol

January 2025

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA.

Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.

Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Cannabis trichome development progresses in distinct phases that underpin the dynamic biosynthesis of cannabinoids and terpenes. This study investigates the molecular mechanisms underlying cannabinoid and terpenoid biosynthesis in glandular trichomes of Cannabis sativa (CsGTs) throughout their development. Female Cannabis sativa c.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!