We review evidence indicating that the striatum and striatal dopamine D2 receptors are involved in the regulation of pain in humans. Painful stimulation produces an increase in regional cerebral blood flow in the human striatum. Pain is a common symptom in patients with nigrostriatal dopaminergic hypofunction. Positron emission tomography findings show that a low dopamine D2 receptor availability in the striatum of healthy subjects (indicating either a low density of dopamine D2 receptors or a high synaptic concentration of dopamine) is associated with a high cold pain threshold and a low capacity to recruit central pain inhibition by conditioning stimulation. Patients with chronic orofacial pain have higher dopamine D2 receptor availability than their age-matched controls. We propose that the striatal dopamine D2 receptor may be an important target for the diagnosis and treatment of chronic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2004.07.024DOI Listing

Publication Analysis

Top Keywords

striatal dopamine
12
dopamine receptors
12
dopamine receptor
12
pain humans
8
receptor availability
8
pain
7
dopamine
6
receptors modulation
4
modulation pain
4
humans review
4

Similar Publications

Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [C]-raclopride binding potential (BP) in the ventral striatum (Cohen's d = -0.

View Article and Find Full Text PDF

Background: We aimed to investigate the effects of whey protein (WP) supplements in a rat model of rotenone-induced locomotor and biochemical features of Parkinson's disease (PD).

Materials And Methods: Male Wistar rats were used. Daily injections of rotenone (2 mg/kg; i.

View Article and Find Full Text PDF

Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease.

Neurobiol Dis

December 2024

Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model.

View Article and Find Full Text PDF

Background: While previous imaging studies have generally shown normal striatal dopamine transporter (DAT) binding in essential tremor (ET), emerging evidence suggests a partial dopaminergic mechanism in this condition and an epidemiological link between ET and Parkinson's disease (PD). This link seems particularly meaningful in ET patients with additional neurological signs, such as slowness of movements, rigidity, or rest tremor (ET+).

Objectives: To investigate the potential dopaminergic pathophysiology of ET+ and to compare it to PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!