Transepithelial fluctuation analysis (noise analysis) provides valuable information about the density and single-channel properties of ion channels in intact epithelia. Here we investigate cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride (Cl-) secretion in T84 human colonic epithelia by inducing noise using the diarylsulfonylurea DASU-01, a low-affinity open-channel blocker of CFTR. Our data indicate that the apical membrane of maximally stimulated T84 epithelia has a very high Cl- conductance generated by approximately 7000 active CFTR channels per cell with open probability (Po) of approximately 0.4 and single-channel amplitude (i) of approximately 0.1 pA. Similar experiments might provide important information about how drugs regulate CFTR in intact epithelia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcf.2004.05.027 | DOI Listing |
Environ Pollut
February 2025
Department of Zoology, University of British, Columbia, Canada.
Microplastics (MPs) are constantly degrading while moving through aquatic systems as a result of mechanical abrasion, thermal fluctuations, UV light, and chemical exposure. As such, fish may experience pulse exposures to differentially degraded plastics. This study addresses how pulse exposures, over the course of minutes, to differentially degraded microplastics alters a key ionoregulatory property of the goldfish gill.
View Article and Find Full Text PDFJ Comp Physiol B
December 2024
Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada.
Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.
View Article and Find Full Text PDFExp Neurol
September 2024
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China. Electronic address:
Background And Purpose: The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors.
View Article and Find Full Text PDFPurpose: To investigate corneal epithelial thickness changes during a 6-month follow-up period after transepithelial photorefractive keratectomy (tPRK), femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK), and small incision lenticule extraction (SMILE).
Methods: This prospective study included 76 eyes of 76 participants who underwent myopic refractive surgery (23 FS-LASIK, 22 SMILE, and 31 tPRK). Epithelial thickness and anterior curvature were averaged over 4 regions (subdivided into 25 areas) and measured by spectral-domain optical coherence tomography and Scheimpflug tomography before the operation (pre) and at 1 or 3 days (pos1-3d), 1 week (pos1w), and 1 month (pos1m), 3 months (pos3m), and 6 months (pos6m) postoperatively.
Int J Mol Sci
February 2023
University Clinic for Cardiac and Thoracic Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
In vitro airway models are increasingly important for pathomechanistic analyses of respiratory diseases. Existing models are limited in their validity by their incomplete cellular complexity. We therefore aimed to generate a more complex and meaningful three-dimensional (3D) airway model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!