Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a dynamic output feedback control with adaptive rotor-imbalance compensation based on an analytical Takagi-Sugeno fuzzy model for complex nonlinear magnetic bearing systems with rotor eccentricity. The rotor mass-imbalance effect is considered with a linear in the parameter approximator. Through the robust analysis for disturbance rejection, the control law can be synthesized in terms of linear matrix inequalities. Based on the suggested fuzzy output feedback design, the controller may be much easier to implement than conventional nonlinear controllers. Simulation validations show that the proposed robust fuzzy control law can suppress the rotor imbalance-induced vibration and has excellent capability for high-speed tracking and levitation control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tsmcb.2004.829776 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!