Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, numerous attempts have been made to improve the performance of fluorescence immunoassays. One way pursued is the substitution of labeling molecules by micro- or nanocrystalline dyes. The surfaces of these particulate structures are typically engineered by a layerwise assembly of oppositely charged polyelectrolytes, the outer layer being constituted of biorecognition molecules, for example, immunoglobulins. In this study, we show that amphiphilic polymers such as alkylated poly(ethylene imine)s and 1,2-distearoyl-sn-glycero-3-phosphatoethanolamine-N-[amino(poly(ethylene glycol))] can fully substitute the more intricate layer-by-layer technique and evaluate the influence of surface charge and particle size on the overall performance of these assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la0486032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!