Effects of organic solvents on the scission energy of rodlike micelles.

Langmuir

Chemical Engineering Department, Princeton University, Princeton, New Jersey 08544, USA.

Published: October 2004

The linear viscoelastic response of erucyl bis(hydroxyethyl) methylammonium chloride with added KCl has been studied as a function of temperature and nonpolar solvent addition. The plateau modulus is independent of temperature from 25 to 40 degrees C, in contrast to previous studies with salicylate counterions that showed a plateau modulus increasing with temperature over this range. The average micelle length, L, predicted by the model of Cates, depends experimentally on Escis/kBT, where Escis is the scission energy of the chain and kBT is the Boltzmann constant times the absolute temperature. With ethanol addition, the calculated average contour length, L, decreases by a factor of 4 as ethanol concentration varies from 0 to 1.3 M. This corresponds to an apparent energy for scission, Escis, decrease from 81 +/- 8 to 74 +/- 7 kJ/mol. On the other hand, only 80 mM of hexane is required to cause a decrease in Escis to the same level, and for hexane addition levels above 70 mM a disruption in the plateau modulus indicates the disruption of the rodlike structure. The correspondence between the effect of temperature and the effect of solvent addition allows the development of "solvent/temperature" superposition rules to predict the rheology of these viscoelastic fluids at elevated temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la035853uDOI Listing

Publication Analysis

Top Keywords

plateau modulus
12
scission energy
8
solvent addition
8
temperature
5
effects organic
4
organic solvents
4
solvents scission
4
energy rodlike
4
rodlike micelles
4
micelles linear
4

Similar Publications

Layered Composites for High Tan Delta Plateau over Wide Temperature Range.

Polymers (Basel)

December 2024

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Jurong West 639798, Singapore.

Tan Delta reflects the viscoelastic behavior of materials, particularly polymers. In most cases, a high Tan Delta value is associated with transitions (such as glass transition or melting), enabling effective damping properties near these temperature ranges. However, achieving a high Tan Delta over a broad temperature range is challenging, particularly for engineering applications that involve significant temperature fluctuations.

View Article and Find Full Text PDF

Rheology of Ring Copolymers in Dilute Solutions.

J Phys Chem B

January 2025

Department of Chemistry, University of Delhi, Delhi, Delhi 110007, India.

We investigate the rheology of ring copolymers theoretically within the framework of the optimized Rouse-Zimm theory in dilute solutions. The ring copolymer is composed of two type of monomers (A and B) of different sizes (A < B), which is represented by unequal-sized beads connected via harmonic springs with different spring constants. The hydrodynamic interactions (HI) between the monomers is modeled using the preaveraged HI tensor.

View Article and Find Full Text PDF

This research delves into understanding the effects of composition on the rheological response of multi-component food inks for 3D food printing. Accordingly, the motivation is to decouple the nutrient and water content effects on the rheology. We formulated inks by combining pea fractions with water and employing a water-holding-capacity based hydration method.

View Article and Find Full Text PDF
Article Synopsis
  • A study explored a method to create eco-friendly lubricating oleogels using dried cellulose nanofibers (CNFs) as a thickener in castor oil.
  • The research involved detaching clusters of dried CNFs through water dispersion, followed by methanol washes to prepare the hydrogels for dispersion in oil.
  • Optimization focused on various factors affecting the oleogels' properties, revealing that CNF concentration significantly influenced their stability and elastic behavior, showcasing effective thickening and long-term storage stability.
View Article and Find Full Text PDF

Due to the unique geographical environment of the plateau, large-scale damage and destruction of fractured surrounding rock often occur during geotechnical engineering construction as a result of high-temperature cycles. Therefore, this study aims to investigate the mechanical properties and damage characteristics of fractured granite under the influence of cyclic temperature, uniaxial compression tests were conducted on granite specimens with pre-existing fractures at cyclic temperatures of 30 °C, 50 °C, 70 °C, 100 °C, and 130 °C. The study integrated analyses of characteristic stress, acoustic emission parameters, damage variables, fractal dimensions, and SEM to explore the mechanical properties and damage features of granite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!