Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi048499nDOI Listing

Publication Analysis

Top Keywords

aminobacter aminovorans
8
nadhflavin oxidoreductase
8
gdh motif
8
frdaa
5
aminovorans nadhflavin
4
oxidoreductase his140
4
his140 highly
4
highly conserved
4
conserved residue
4
residue critical
4

Similar Publications

[Isolation and degradation characterization of a 1, 4-dioxane-degrading bacterial strain].

Sheng Wu Gong Cheng Xue Bao

October 2024

State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.

Article Synopsis
  • Researchers isolated a bacterial strain, DXTK-010, from groundwater contaminated with the carcinogen 1,4-dioxane, demonstrating its ability to efficiently degrade this substance.
  • The strain was found to thrive in a temperature range of 20 to 37°C and at a pH of 5.0 to 8.0, with optimal degradation occurring at 30°C and pH 7.5, where it completely degraded 200 mg/L of 1,4-dioxane in 24 hours.
  • Whole genome sequencing revealed vital genes for degradation, indicating that DXTK-010 is more effective than other known degraders, offering a promising solution for bioremediation of 1,4-d
View Article and Find Full Text PDF

Study of bacterial population dynamics in seed culture developed for ammonia reduction from synthetic wastewater.

World J Microbiol Biotechnol

January 2024

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The waterbodies have been polluted by various natural and anthropogenic activities. The aquatic waste includes ammonia as one of the most toxic pollutants. Several biological treatment systems involving anoxic and semi anoxic bacteria have been proposed for reducing nitrogen loads from wastewater and increasing the efficiency and cost effectiveness.

View Article and Find Full Text PDF

Using highly purified enzyme preparations throughout, initial kinetic studies demonstrated that the isoenzymic 2,5- and 3,6-diketocamphane mono-oxygenases from ATCC 17453 and the LuxAB luciferase from ATCC 7744 exhibit commonality in being FMN-dependent two-component monooxygenases that promote redox coupling by the transfer of flavin reductase-generated FMNH by rapid free diffusion. Subsequent studies confirmed the comprehensive inter-species compatibility of both native and non-native flavin reductases with each of the tested monooxygenases. For all three monooxygenases, non-native flavin reductases from ATCC 11105 and ATCC 29600 were confirmed to be more efficient donators of FMNH than the corresponding tested native flavin reductases.

View Article and Find Full Text PDF

Incubation of , , and MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product -acetamido-phenol, produced from 2-aminophenol, led to the recently identified -(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown (2-hydroxy-5-nitrosophenyl)acetamide, and to (2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure (2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR.

View Article and Find Full Text PDF

Taxonomic decisions within the order have relied heavily on the interpretations of highly conserved 16S rRNA sequences and DNA-DNA hybridizations (DDH). Currently, bacterial species are defined as including strains that present 95-96% of average nucleotide identity (ANI) and 70% of digital DDH (dDDH). Thus, ANI values from 520 genome sequences of type strains from species of order were computed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!