A bioinformatic tool was developed to assist with the victim identification initiative that followed the Swissair Flight 111 disaster. Making use of short tandem repeat (STR) DNA typing data generated with AmpFlSTR Profiler Plus (PP) and AmpFlSTR COfiler(CO) kits, the software systematically compared each available STR genotype with every other genotype. The matching algorithm was based on the search for: (i) direct matches to genotypes derived from personal effects; and (ii) potential kinship associations between victims and next-of-kin, as measured by allele sharing at individual loci. The software greatly assisted parentage analysis by enabling kinship evaluation in situations where complete parentage trios were unavailable and, in some situations, with distantly related relatives. Exclusion of fortuitous kinship associations (FKA) was made possible through the recovery at the disaster site of at least one remains for every sought-after victim, and was incorporated into the kinship software. The data from the 13 combined STR loci produced 6 and 23 times fewer FKAs when compared with PP alone and AmpFlSTR Profiler (PR) alone, respectively. Identification leads or confirmations of identification were obtained for 218 victims for which DNA reference samples (personal effects and kin) had been submitted. Confirmation of an inferred kinship association was sought through frequency and likelihood calculations, as well as corroborative data from other identification modalities. The use of a simple, yet powerful, automated genotype comparison approach and the use of megaplexes with high power of discrimination (PD) values extended considerably the identification capabilities in the case of the Swissair disaster. The DNA typing identification modality proved to be a valuable component of the large arsenal of identification tools deployed in the aftermath of this disaster.
Download full-text PDF |
Source |
---|
Int J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan.
A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.
View Article and Find Full Text PDFNon-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!