Antineutrophil cytoplasm antibodies (ANCA) activate neutrophils to undergo a series of coordinated interactions, leading to transendothelial migration, eventually culminating in vascular destruction. The molecular events underlying neutrophil recruitment in ANCA-associated vasculitis need to be defined to enable effective therapeutic manipulation. A flow-based adhesion assay was used to investigate the role of beta2 integrins (CD11a/CD18 and CD11b/CD18) and chemokine receptors [CXC chemokine receptor (CXCR)1 and CXCR2] in neutrophil migration through the endothelium. Two endothelial models were used: a highly activated model stimulated with 100 U/ml tumor necrosis factor alpha (TNF-alpha) and a minimally activated model stimulated with 2 U/ml TNF-alpha and in which ANCA was present as a secondary neutrophil stimulus. CD11a/CD18, CD11b/CD18, and CXCR2 contributed to adhesion and transendothelial migration in both models. However, when the endothelium was minimally activated with TNF-alpha, CD11b/CD18 played an important role in stabilizing adhesion induced by ANCA immunoglobulin G (IgG). Analysis of beta2 integrins and chemokine receptors demonstrated that ANCA IgG had no effect on expression levels at the neutrophil surface but enabled an active conformational change of CD11b/CD18. Similar molecular mechanisms control neutrophil adhesion and migration through highly or minimally TNF-alpha-activated endothelium. However, the direct ANCA-mediated neutrophil stimulation is needed to drive migration through minimally activated endothelium, and CD11b/CD18 is recruited for greater stability of adhesion during this process and can undergo an activatory, conformational change in response to ANCA IgG.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.0104054DOI Listing

Publication Analysis

Top Keywords

minimally activated
12
transendothelial migration
8
beta2 integrins
8
cd11a/cd18 cd11b/cd18
8
chemokine receptors
8
activated model
8
model stimulated
8
anca igg
8
conformational change
8
anca
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!