Karyotypical alteration of chromosome 5 and in particular band 5q13 is a frequent finding in hairy cell leukemia (HCL). We have previously identified a number of candidate genes localized in close proximity to a constitutional inv(5)(p13.1q13.3) breakpoint in one HCL patient. These included beta-hexosaminodase HEXB, frequently mutated in the lysosomal storage disorder Sandhoff disease. We now report that the 5q13.3 breakpoint disrupts a novel evolutionary conserved alternative isoform of HEXB. This isoform directly overlaps, in a cis-antisense fashion, exon 1 of the gene for ectodermal neuronal cortex 1 ENC-1, and was thus named ENC-1AS. ENC-1 has previously been shown to be overexpressed in several malignancies, and is believed to play a critical regulatory role in malignant transformation of various tumors. Importantly, subsequent analysis of ENC-1 in purified primary HCL tumor cells revealed a striking upregulation of ENC-1 in all 26 patients examined, compared with normal peripheral blood lymphocytes from healthy donors. Upon further analysis of the ENC-1/ENC-1AS locus, we identified a complex 5' regulatory mechanism involving an inverse expression of the ENC-1 sense and the ENC-1AS transcripts in several tissues supporting the hypothesis that expression of ENC-1AS regulates ENC-1 levels. In addition, we have also found tissue-specific methylation of a 1.2 kb segment encompassing the overlapping ENC-1/ENC-1AS 5' exons, adding to the complexity of the regulation of this locus. Altogether, these results suggest that upregulation of ENC-1 contributes to the development of HCL and provides new information on the possible dysregulation of ENC-1 including expression of a novel antisense gene, ENC-1AS.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddh315DOI Listing

Publication Analysis

Top Keywords

enc-1
9
antisense gene
8
gene enc-1as
8
hairy cell
8
cell leukemia
8
upregulation enc-1
8
enc-1as
5
disruption novel
4
novel ectodermal
4
ectodermal neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!