Time-lapse and cell ablation reveal the role of cell interactions in fly glia migration and proliferation.

Development

Institut de Génétique et Biologie Moléculaire et Cellulaire, IGBMC/CNRS/ULP/INSERM - BP 10142, ILLKIRCH, C. U. de Strasbourg 67404, France.

Published: October 2004

Migration and proliferation have been mostly explored in culture systems or fixed preparations. We present a simple genetic model, the chains of glia moving along fly wing nerves, to follow such dynamic processes by time-lapse in the whole animal. We show that glia undergo extensive cytoskeleton and mitotic apparatus rearrangements during division and migration. Single cell labelling identifies different glia: pioneers with high filopodial, exploratory, activity and, less active followers. In combination with time-lapse, altering this cellular environment by genetic means or cell ablation has allowed to us define the role of specific cell-cell interactions. First, neurone-glia interactions are not necessary for glia motility but do affect the direction of migration. Second, repulsive interactions between glia control the extent of movement. Finally, autonomous cues control proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.01398DOI Listing

Publication Analysis

Top Keywords

cell ablation
8
migration proliferation
8
interactions glia
8
glia
6
time-lapse cell
4
ablation reveal
4
reveal role
4
role cell
4
interactions
4
cell interactions
4

Similar Publications

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

A more complete map of the pattern of genetic variation among inbred mouse strains is essential for characterizing the genetic architecture of the many available mouse genetic models of important biomedical traits. Although structural variants (SVs) are a major component of genetic variation, they have not been adequately characterized among inbred strains due to methodological limitations. To address this, we generated high-quality long-read sequencing data for 40 inbred strains; and designed a pipeline to optimally identify and validate different types of SVs.

View Article and Find Full Text PDF

PI31 ( P roteasome Inhibitor of 31 ,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31.

View Article and Find Full Text PDF

Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons.

View Article and Find Full Text PDF

Photobiomodulation and aquatic training reduce TNF-α expression and enhance muscle fiber area in Wistar rats with compensatory hypertrophy.

Lasers Med Sci

January 2025

Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), 235/249 Vergueiro Street, Sao Paulo, SP, 01525000, Brazil.

This study aims to assess the effects of aquatic training (AT) and its combination with photobiomodulation (PBM) on cytokine synthesis and plantar muscle morphology during compensatory hypertrophy (H) in Wistar rats. H was induced by bilateral ablation of synergistic muscles, and PBM using a laser (780 nm). AT involved 60 min sessions, 5 times/week, for 7 and 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!