Plasma von Willebrand factor (VWF) has been identified as an indispensable factor for platelet adhesion and thrombus formation on a collagen surface under flow conditions. VWF binds to collagen and then tethers platelets to the collagen surface through interaction with platelet glycoprotein Ib and also contributes to the thrombus formation on the collagen surface. In the present study, we demonstrated that the addition of VWF/factor VIII complex or purified VWF (> 2 ristocetin cofactor activity units/mL) increased platelet adhesion to the collagen surface in platelet-reduced blood ( approximately 5 x 10(4) platelets/microL) to the normal level. VWF had no stimulatory effect when it was allowed to bind to the collagen surface before blood flow was initiated. Addition of an excess of FITC (fluorescein-5-isothiocyanate)-labeled VWF to platelet-reduced blood under these flow conditions demonstrated that the VWF was mainly incorporated into the platelet aggregates. These results indicated that the supplemented VWF stimulates the platelet adhesion onto the collagen surface by enhancing platelet aggregation in the platelet-reduced condition. This also suggests a possibility that supplementation of VWF to individuals with thrombocytopenia might be effective for increasing their hemostatic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2004-05-1827 | DOI Listing |
Aging Cell
December 2024
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:
Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).
Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.
Biomaterials
December 2024
Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China. Electronic address:
Chronic diabetic wound poses a pressing global healthcare challenge, necessitating an approach to address issues such as pathogenic bacteria elimination, blood sugar regulation, and angiogenesis stimulation. Herein, we engineered a BiWO@CuO-GOx bio-heterojunction (BWCG bio-HJ) with exceptional cascade catalytic performance and impressive sonosensitivity to remodel the wound microenvironment and expedite the diabetic wound healing. Specifically, the Z-scheme junctions of BiWO@CuO significantly augmented carrier separation dynamics, leading to the highly efficient generation of reactive oxygen species (ROS) upon US irradiations.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China. Electronic address:
ACS Appl Bio Mater
December 2024
Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!