Homeostatic regulation of spine number in mature hippocampal neurons results in more dendritic spines when synaptic transmission is blocked, providing a mechanism to compensate for diminished synaptic input. It is unsettled whether blockade of synaptic transmission also elevates spine number during development. To address this question, synaptic transmission was blocked in rat hippocampal slices during critical developmental stages of spine formation at postnatal days (P) 6-P22 and compared to adults. CA1 pyramidal cells were labeled with DiI and maintained for 5 h in one of three conditions, control artificial cerebrospinal fluid (ACSF), block media containing synaptic transmission antagonists in ACSF, or block media containing synaptic transmission antagonists in a nominally calcium-free ACSF with high magnesium. Slices were fixed in mixed aldehydes, sectioned, and the lateral dendrites were imaged in stratum radiatum with confocal microscopy. Dendritic spine density was quantified per unit length of dendrite. At P6-7 there were only a few protrusions emerging from the dendrites, which were predominantly filopodia-like in appearance. At both P11-12 and P15-16 there was a mixture of dendritic spines and filopodia-like structures. By P20-22 dendritic spines predominated and spine density was about 82% of the adult level. Dendritic spine density increased during blocked synaptic transmission at P20-22 as in adults, but was unchanged during blockade at younger ages. When extracellular calcium was nominally zero, dendritic spine density further increased on P20-22 dendrites as in adults. In contrast, spine density decreased along P11-12 dendrites under the nominally zero calcium condition. Under control conditions, dendritic protrusions were longer at P6-7 than at all other ages, which did not differ from one another. When synaptic transmission was blocked, dendritic protrusions further elongated at P6-7 only. Under the nominally zero calcium condition with blocked synaptic transmission, dendritic protrusions shortened at P11-12 only. These findings reveal age-dependent changes in the manifestation of homeostatic control of dendritic spines that could be mediated by maturational changes in mechanisms regulating postsynaptic calcium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2004.07.039DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
36
spine density
20
dendritic spine
16
dendritic spines
16
spine number
12
blocked synaptic
12
transmission blocked
12
dendritic protrusions
12
dendritic
11
synaptic
10

Similar Publications

Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection.

Pharmacol Res

January 2025

Gill Institute for Neuroscience; Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405. Electronic address:

Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.

View Article and Find Full Text PDF

Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus).

Neuroscience

January 2025

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:

Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).

View Article and Find Full Text PDF

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Assessing the Effect of Fatigue on Swallowing Function in Adults with Acute Stroke. A Pilot Study.

Arch Rehabil Res Clin Transl

December 2024

Peninsula Hospital Center, Department of Speech-Language Pathology and Audiology, Far Rockaway, NY.

Objective: To determine if fatigue systematically effects the timing of swallowing events and to discuss underlying causes of fatigue other than peripheral neuromuscular fatigue.

Design: Pre-post within-subject repeated-measures design.

Setting: General acute care hospital and designated stroke center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!