Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Pasteurella multocida toxin (PMT) is a potent mitogen which enters the cytosol of eukaryotic cells via a low pH membrane translocation event. In common with the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), the core of the PMT translocation domain is composed of two predicted hydrophobic helices (H1 - residues 402-423, H2 - 437-457) linked by a hydrophilic loop (PMT-TL - 424-436). The peptide loop contains three acidic residues (D425, D431 and E434), which may play a role equivalent to D373, D379 and E382/383 in CNF1. To test this hypothesis, a series of point mutants was generated in which acidic residues were mutated into the permanently charged positive residue lysine. Individual mutation of D425, D431 and E434 each caused a four- to sixfold reduction in toxin activity. Interestingly, mutation of D401 located immediately outside the predicted helix-loop-helix motif completely abolished toxin activity. Individual mutations did not affect cell binding nor greatly altered toxin structure, but did prevent translocation of the surface-bound proteins into the cytosol after a low pH pulse. Moreover, we demonstrate using an in vitro assay that PMT undergoes a pH-dependent membrane insertion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2004.04264.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!