Monolayers of amphiphile-modified nucleic bases with diynoic acid were obtained and characterized. The synthesized nucleic bases contained in the monolayer complementarily bind the nucleotide molecules contained in the aqueous subphase, and the structure of the resulting monolayers can be fixed by the photopolymerization of diynoic acid. The resulting monolayer exemplifies a novel type of model systems for investigating molecular recognition at the surface of biological membranes. Procedures for the transfer of the monolayers onto solid substrates and photopolymerization of the diynoic acid in mixtures with the derivatives of nucleic bases were developed. The films obtained were structurally characterized using atomic force microscopy. Compression isotherms of the mixed monolayers as well as individual components of monolayers at the air-water interface allowed one to determine the concentration range at which the diynoic acid form true mixtures or domain structures with the derivatives of nucleic base. A study of the films transferred to the solid substrate by atomic force microscopy indicated that this concentration dependence of miscibility behavior was conserved in the transferred films.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!