The membrane M-protein of Newcastle disease virus is localized directly beneath the lipid bilayer. Although this protein is the major constituent of the virus, its structural relationship to the lipid or to the other viral component hemagglutinin-neuraminidase, the so called HN-glycoprotein, is still unknown. The effects of either M-protein alone or both M-protein and HN-glycoprotein on the lipid assemblies in reconstituted liposomes were determined by differential polarized phase fluorometry, steady-state fluorescence anisotropy and emission lifetime measurements. It is demonstrated that the degree of rotation of fluorophores in reconstituted liposomes is restricted by the molecular packing of lipids in the bilayer and this in turn can be correlated with the structural order of the lipids in the membrane. The experimental results show that the structural order parameters calculated from the fluorescence measurements are strongly influenced by the presence of both M-protein and HN-glycoprotein in the lipid assemblies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00788750 | DOI Listing |
Chem Commun (Camb)
January 2025
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Electrochemical water splitting is a promising approach to convert renewable energy into hydrogen energy and is beneficial for alleviating environmental pollution and energy crises, and is considered a clean method to achieve dual-carbon goals. Electrocatalysts can effectively reduce the reaction energy barrier and improve reaction efficiency. However, designing electrocatalysts with high activity and stability still faces significant challenges, which are closely related to the structure and electronic configuration of catalysts.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
Introduction: , a genus within the Zingiberales order, is renowned for its diverse morphology, suggesting a rich genetic reservoir. However, genetic research on plants within the family has primarily focused on taxonomy and phylogenetics, with limited exploration into other genetic aspects, particularly the chloroplast genome. Given the significance of chloroplast genomes in evolutionary studies, a deeper understanding of their structure and diversity within Heliconia is essential.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
In this report, we describe the photoluminescence of a homoleptic uranium(IV) alkoxide complex. Excitation of [Li(THF)][U(O Bu)] leads to the first example of photoluminescence from a well-defined actinide complex originating from an f-f excitation, supported by second order multiconfigurational electronic structure calculations including spin-orbit coupling. These calculations show strong spin-orbit coupling between the excited triplet and singlet states for the 5f-orbital manifold, which leads to a long-lived excited state lifetime of 0.
View Article and Find Full Text PDFJACS Au
January 2025
Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle.
View Article and Find Full Text PDFExtracell Vesicle
December 2024
The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!