Transport of pharmaceutically active compounds in saturated laboratory columns.

Ground Water

Institute of Applied Geosciences, Technical University Berlin, Ackerstr. 71-76, D-13355 Berlin, Germany.

Published: December 2004

Occurrences of pharmaceutically active compounds in surface water and sewage water have been widely reported. Investigations show the presence of several classes of pharmaceuticals such as antirheumatics (e.g., diclofenac), analgesics (e.g., propyphenazone), and blood lipid regulators (clofibric acid), even in ground water. Compared to their occurrences in surface water, however, the reported incidences of drugs in ground water are much rarer. This may be due to the input, but also to transport processes and degradation in the aquifer. In field studies investigating ground water sampled at a bank infiltration site at Lake Tegel, Berlin, Germany, clofibric acid was found at concentrations up to 290 ng/L, and propyphenazone up to 250 ng/L, whereas concentrations of diclofenac were around the detection limit. The aim of this study was to investigate the ground water transport behavior of the pharmaceuticals clofibric acid, propyphenazone, and diclofenac with a laboratory soil column experiment. Results show that clofibric acid exhibits no degradation and almost no retardation (Rf = 1.1). Diclofenac (Rf = 2.0) and propyphenazone (Rf = 1.6) are retarded, whereas significant degradation was not observed for both pharmaceuticals under the prevailing conditions in the soil column. We conclude that the concentration distribution of the pharmaceuticals at the bank filtration site at Lake Tegel is controlled by sorption, desorption, and input variation, rather than by degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2004.tb02730.xDOI Listing

Publication Analysis

Top Keywords

clofibric acid
16
ground water
16
pharmaceutically active
8
active compounds
8
surface water
8
water reported
8
site lake
8
lake tegel
8
soil column
8
water
7

Similar Publications

Degradation mechanism and toxicity assessment of clofibric acid by Fe/PS process in saline pharmaceutical wastewater.

Environ Technol

November 2024

School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China.

Article Synopsis
  • The study investigates the oxidation of clofibric acid (CA) using the Fe/persulfate (PS) process, focusing on how chlorine affects degradation and toxicity in saline pharmaceutical wastewater.
  • Results showed a high removal efficiency (70.91%) for CA at pH 3.0, but only low mineralization (20.99%), indicating that while CA can be removed, it doesn’t break down completely.
  • Moreover, the presence of chlorine led to the formation of toxic chlorinated by-products, raising ecological concerns around using the Fe/PS treatment in high-salinity environments.
View Article and Find Full Text PDF

BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays.

View Article and Find Full Text PDF

Novel drug targets and molecular mechanisms for sarcopenia based on systems biology.

Biomed Pharmacother

July 2024

Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK; Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden. Electronic address:

Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed.

View Article and Find Full Text PDF

Mechanistic study of visible light driven photocatalytic degradation of clofibric acid using Fe-based metal organic frameworks (MOFs).

Chemosphere

July 2024

Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

Although a series of past studies proved the potential usage of Fe-based metal-organic frameworks (MOFs) as photocatalysts, there remains a knowledge gap of the photocatalytic mechanism stemming from the challenge to separate the simultaneous sorption and photocatalytic degradation. Thus, this article aimed to suggest a novel approach by desorbing target molecules during photocatalysis to excavate the underlying mechanisms of sorption and photocatalytic degradation. In this study, two Fe-based MOFs, MIL-101(Fe) and MIL-101(Fe)-NH, were selected to remove clofibric acid under visible light irradiation.

View Article and Find Full Text PDF

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!