Neonatal mouse skin is useful for studying changes in gene expression during development of hair follicles, as the mitotic activity of skin cells changes shortly after birth. Using ribonucleic acid (RNA) differential display, a 261-nt message has been identified in the skin, specifically on d 3-5 but not on d 2 after birth. Confirmation of its expression by ribonuclease protection assay showed that stronger expression is seen on d 3-5 compared with d 1-2. Using RNA ligase-mediated rapid amplification of 5' complementary deoxyribonucleic acid ends, we have successfully isolated a 3046-bp gene, which has 93% sequence homology to a mouse teashirt1 gene. Amino acid analysis showed that it has 74% identity to the mouse teashirt1 protein and possesses zinc-finger motifs 1, 2, and 3. In situ hybridization data revealed that it is mainly expressed in the follicle bulb, including dermal papilla and matrix cells. As the proliferation of bulb cells is important to follicle development during this period, the finding of its strong expression on d 3-5 suggests that the identified gene is a potential candidate for follicle growth.

Download full-text PDF

Source
http://dx.doi.org/10.1385/MB:28:1:09DOI Listing

Publication Analysis

Top Keywords

neonatal mouse
8
mouse skin
8
development hair
8
hair follicles
8
expression 3-5
8
mouse teashirt1
8
novel gene
4
gene homologous
4
homologous teashirt
4
teashirt differentially
4

Similar Publications

Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution.

BMC Genomics

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.

View Article and Find Full Text PDF

Adult human hearts exhibit limited regenerative capacity. Post-injury cardiomyocyte (CM) loss can lead to myocardial dysfunction and failure. Although neonatal mammalian hearts can regenerate, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Objective: Many cancer survivors may experience irreversible infertility due to chemotherapy treatment for childhood cancer. In this study, spermatogenesis development was evaluated following the grafting of fresh and frozen-thawed testicular tissue from neonatal mice to the epididymal fat of adult mice.

Methods: After bilateral castration of recipient mice, fresh or frozen-thawed neonatal testis tissues were grafted into the epididymal fat of the mice.

View Article and Find Full Text PDF

Milk is a multifaceted biofluid that is essential for infant nutrition and development, yet its cellular and bioactive components, particularly maternal milk cells, remain understudied. Early research on milk cells indicated that they cross the infant's intestinal barrier and accumulate within systemic organs. However, due to the absence of modern analytical techniques, these studies were limited in scope and mechanistic analysis.

View Article and Find Full Text PDF

Cortical interneurons play an important role in mediating the juvenile critical period for ocular dominance plasticity in the mouse primary visual cortex. Previously, we showed that transplantation of cortical interneurons derived from the medial ganglionic eminence (MGE) opens a robust period of ocular dominance plasticity 33-35 days after transplantation into neonatal host visual cortex. The plasticity can be induced by transplanting either PV or SST MGE-derived cortical interneurons; it requires transplanted interneurons to express the vesicular GABAergic transporter; and it is manifested by changes to the host visual circuit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!