Mus musculus Pax2 transactivation domain-interacting protein (Ptip) is an essential gene required for the maintenance of genome stability, although its precise molecular role is unclear. Human PTIP (hPTIP) was recently isolated in a screen for proteins, translated from cDNA pools, capable of interacting with peptides phosphorylated by the ATM (ataxia telangiectasia-mutated)/ATR (ataxia telangiectasia-related) protein kinases. hPTIP was described as a 757-amino acid protein bearing four BRCT domains. Here we report that instead full-length endogenous hPTIP contains 1069 amino acids and six BRCT domains. hPTIP shows increased association with 53BP1 in response to ionizing radiation (IR) but not in response to other DNA-damaging agents. Whereas translocation of both 53BP1 and hPTIP to sites of IR-induced DNA damage occurs independently of ATM, IR-induced association of PTIP and 53BP1 requires ATM. Deletion analysis identified the domains of 53BP1 and hPTIP required for protein-protein interaction and focus formation. Data characterizing the cellular roles of hPTIP are also presented. Small interfering RNA was used to show that hPTIP is required for ATM-mediated phosphorylation of p53 at Ser(15) and for IR-induced up-regulation of the cyclin-dependent kinase inhibitor p21. Lowering hPTIP levels also increased cellular sensitivity to IR, suggesting that this protein plays a critical role in maintaining genome stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M411021200 | DOI Listing |
Nucleic Acids Res
December 2017
MRC Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK.
FEBS Lett
December 2011
Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
Human Pax2 transactivation domain-interacting protein (hPTIP), containing six BRCT domains, is an essential protein required for the IR induced DDR process with an unclear role. Here we report that the tandem BRCT5-BRCT6 domain of hPTIP recognizes the γH2AX tail, and this interaction depends on the phosphorylation of H2AX Ser139 and binding with the carboxyl ending peptide to the aminoacyl ending peptide. The 2.
View Article and Find Full Text PDFNucleic Acids Res
September 2007
MRC Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK.
Human (h)PTIP plays important but poorly understood roles in cellular responses to DNA damage. hPTIP interacts with 53BP1 tumour suppressor but only when 53BP1 is phosphorylated by ATM after DNA damage although the mechanism(s) and significance of the interaction of these two proteins are unclear. Here, we pinpoint a single ATM-phosphorylated residue in 53BP1--Ser25--that is required for binding of 53BP1 to hPTIP.
View Article and Find Full Text PDFJ Biol Chem
December 2004
Medical Research Council Protein Phosphorylation Unit, Wellcome Trust Biocentre/Medical Sciences Institute Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
Mus musculus Pax2 transactivation domain-interacting protein (Ptip) is an essential gene required for the maintenance of genome stability, although its precise molecular role is unclear. Human PTIP (hPTIP) was recently isolated in a screen for proteins, translated from cDNA pools, capable of interacting with peptides phosphorylated by the ATM (ataxia telangiectasia-mutated)/ATR (ataxia telangiectasia-related) protein kinases. hPTIP was described as a 757-amino acid protein bearing four BRCT domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!