The voltage-dependent K+ channel 4.3 (Kv4.3) is one of the major molecular correlates encoding a class of rapidly inactivating K+ currents, including the transient outward current in the heart (Ito) and A currents (IA) in neuronal and smooth muscle preparations. Recent studies have shown that Ito in human atrial myocytes and IA in murine colonic myocytes are modulated by Ca2+/calmodulin-dependent protein kinase II (CaMKII); however, the molecular target of CaMKII in these studies has not been elucidated. We performed experiments to investigate whether CaMKII could regulate Kv4.3 currents directly. Inclusion of the autothiophosphorylated form of CaMKII in the patch pipette (10 nM) prolonged Kv4.3 currents such that the time required to reach 50% inactivation from peak more than doubled, with positive shifts in voltage dependence of both activation and inactivation. In contrast, the rate of recovery from inactivation was accelerated under these conditions. CaMKII-inhibitory peptide or KN-93 produced effects opposite to that above; thus the rate of inactivation was increased, and recovery from inactivation decreased. A number of mutagenesis experiments were conducted on the three candidate CaMKII consensus sequence sites on the channel. Mutations at S550A, located at the COOH-terminal region of the channel, resulted in currents that inactivated more rapidly but recovered from inactivation at a slower rate than that of wild-type controls. In addition, these currents were unaffected by dialysis with either autothiophosphorylated CaMKII or the specific inhibitory peptide of CaMKII, suggesting that CaMKII slows the inactivation and accelerates the rate of recovery from inactivation of Kv4.3 currents by a direct effect at S550A, located at the COOH-terminal region of the channel.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00293.2004DOI Listing

Publication Analysis

Top Keywords

kv43 currents
16
recovery inactivation
12
currents
8
ca2+/calmodulin-dependent protein
8
protein kinase
8
camkii
8
inactivation
8
rate recovery
8
s550a located
8
located cooh-terminal
8

Similar Publications

Inhibition of cardiac K4.3 (I) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine.

Eur J Pharmacol

August 2020

Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. Electronic address:

Transient outward K current, I, contributes to cardiac action potential generation and is primarily carried by K4.3 (KCND3) channels. Two K4.

View Article and Find Full Text PDF

Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine.

Toxicol Appl Pharmacol

October 2015

Laboratory of Cardiac Biophysics, Instituto de Fisiología and Facultad de Medicina, Universidad Autónoma de Puebla, Puebla, Mexico. Electronic address:

The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (Ito) and the molecular correlate, the Kv4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular Ito and of CHO cells co-transfected with human Kv4.

View Article and Find Full Text PDF

Background: Congenital mutations in the cardiac Na+ channel (encoded by SCN5A) underlie long QT syndrome type 3. The sea anemone peptide toxin ATX-II mimics the slowed inactivation kinetics characteristic of many long QT type 3 (LQT3) mutations. However, the I1768V SCN5A mutation is associated with faster recovery kinetics, for which there exists no known pharmacologic equivalent.

View Article and Find Full Text PDF

The roles of sustained components of I(Na) and I(Kv43) in shaping the action potentials (AP) of myocytes isolated from the canine left ventricle (LV) have not been studied in detail. Here we investigate the hypothesis that these two currents can contribute substantially to heterogeneity of early repolarization and arrhythmic risk. Quantitative data from voltage-clamp and expression profiling experiments were used to complete meaningful modifications to an existing "local control" model of canine midmyocardial myocyte excitation-contraction coupling for epicardial and endocardial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!