An ultimate and general model describing the interaction between opioid ligands and mu-opioid receptors is not available yet, so the mode of action of atypical peptide analogues or peptidomimetics is worthy of investigation. In this context, the peptide c[-Tyr-d-Pro-d-Trp-Phe-Gly-] was observed to act as an agonist toward mu-opioid receptors with appreciable potency, albeit deprived of a protonable nitrogen. This compound was synthesized as a member of a library of diastereo- or enantiomeric cyclic peptides based on the sequence of endomorphin-1, aiming to obtain lipophilic peptide ligands active at the mu-opioid receptors, having good performances in terms of resistance to enzymatic degradation and permeation of biological barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0498811DOI Listing

Publication Analysis

Top Keywords

mu-opioid receptors
16
based sequence
8
synthesis evaluation
4
evaluation affinity
4
mu-opioid
4
affinity mu-opioid
4
receptors
4
receptors atypical
4
atypical lipophilic
4
lipophilic ligands
4

Similar Publications

Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.

Neuroscience

January 2025

Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:

While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study.

Biomed Pharmacother

January 2025

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:

Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!