Whereas previously the output of HIV resistance tests has been based on therapeutically arbitrary criteria, there is now an ongoing move towards correlating test interpretation with virological outcomes on treatment. This approach is undeniably superior, in principle, for tests intended to guide drug choices. However the predictive accuracy of a given stratagem that links genotype or phenotype to drug response is strongly influenced by the study design, data capture and analytical methodology used to derive it. For genotyping, the most widely used resistance tool in clinical practice, these considerations are further complicated by the range of mutational patterns present in the treated population. There is no definitively superior methodology for generating a genotype-response association for use in interpreting a resistance test, and the various approaches used to date all have their strengths and weaknesses. This review discusses the processes involved in constructing such tools, with particular emphasis on establishing validated mutation score rules, and examines the key issues and confounding factors that influence predictive accuracy outside the originating dataset. Since the size of the sample is a key influence on the statistical power to determine an effect, it is hoped that a greater understanding of the influence of study design and methodology will assist the development of standardized outcome measures and reporting formats that allow data pooling at the international level.
Download full-text PDF |
Source |
---|
Int J Equity Health
January 2025
Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
Background: Predicting burn-related mortality is vital for family counseling, triage, and resource allocation. Several of the burn-specific mortality prediction scores have been developed, including the Abbreviated Burn Severity Index (ABSI) in 1982. However, these scores are not tested for accuracy to support contemporary estimates of the global burden of burn injury.
View Article and Find Full Text PDFBiol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
BMC Pharmacol Toxicol
January 2025
Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China.
Objective: The occurrence of hypofibrinogenemia after tocilizumab treatment has attracted increasing attention, which may cause bleeding and even life-threatening. This study aims to explore the risk factors for tocilizumab-induced hypofibrinogenemia (T-HFIB) and construct a risk prediction model.
Methods: A total of 221 inpatients that received tocilizumab from 2015 to 2023 were retrospectively collected and divided into T-HFIB group or control group.
BMC Med Inform Decis Mak
January 2025
Department of Pediatrics, School of Medicine, Ekbatan Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Pediatric, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques to predict brain injury in pediatric patients ECMO and identify key variables for future research.
Methods: Data from pediatric patients undergoing ECMO were collected from the Chinese Society of Extracorporeal Life Support (CSECLS) registry database and local hospitals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!