A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Brainstem pathology in DYT1 primary torsion dystonia. | LitMetric

DYT1 dystonia is a severe form of young-onset dystonia caused by a mutation in the gene that encodes for the protein torsinA, which is thought to play a role in protein transport and degradation. We describe, for the first time to our knowledge, perinuclear inclusion bodies in the midbrain reticular formation and periaqueductal gray in four clinically documented and genetically confirmed DYT1 patients but not in controls. The inclusions were located within cholinergic and other neurons in the pedunculopontine nucleus, cuneiform nucleus, and griseum centrale mesencephali and stained positively for ubiquitin, torsinA, and the nuclear envelope protein lamin A/C. No evidence of inclusion body formation was detected in the substantia nigra pars compacta, striatum, hippocampus, or selected regions of the cerebral cortex. We also noted tau/ubiquitin-immunoreactive aggregates in pigmented neurons of the substantia nigra pars compacta and locus coeruleus in all four DYT1 dystonia cases, but not in controls. This study supports the notion that DYT1 dystonia is associated with impaired protein handling and the nuclear envelope. The role of the pedunculopontine and cuneiform nuclei, and related brainstem brainstem structures, in mediating motor activity and controlling muscle tone suggests that alterations in these structures could underlie the pathophysiology of DYT1 dystonia [corrected]

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.20225DOI Listing

Publication Analysis

Top Keywords

dyt1 dystonia
16
nuclear envelope
8
substantia nigra
8
nigra pars
8
pars compacta
8
dyt1
6
dystonia
6
brainstem pathology
4
pathology dyt1
4
dyt1 primary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!