Radiation hybrid (RH) mapping is based on radiation-induced chromosome breakage and analysis of chromosome segment retention or loss using molecular markers. In durum wheat (Triticum turgidum L., AABB), an alloplasmic durum line [(lo) durum] has been identified with chromosome 1D of T. aestivum L. (AABBDD) carrying the species cytoplasm-specific (scsae) gene. The chromosome 1D of this line segregates as a whole without recombination, precluding the use of conventional genome mapping. A radiation hybrid mapping population was developed from a hemizygous (lo) scsae--line using 35 krad gamma rays. The analysis of 87 individuals of this population with 39 molecular markers mapped on chromosome 1D revealed 88 radiation-induced breaks in this chromosome. This number of chromosome 1D breaks is eight times higher than the number of previously identified breaks and should result in a 10-fold increase in mapping resolution compared to what was previously possible. The analysis of molecular marker retention in our radiation hybrid mapping panel allowed the localization of scsae and 8 linked markers on the long arm of chromosome 1D. This constitutes the first report of using RH mapping to localize a gene in wheat and illustrates that this approach is feasible in a species with a large complex genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1448084 | PMC |
http://dx.doi.org/10.1534/genetics.103.022590 | DOI Listing |
Phys Med Biol
January 2025
Capital Normal University, 105, North West Sanhuan Road, Haidian District, Beijing, Beijing, None Selected, 100048, CHINA.
Objective: Low-dose computed tomography (LDCT) has gained significant attention in hospitals and clinics as a popular imaging modality for reducing the risk of X-ray radiation. However, reconstructed LDCT images often suffer from undesired noise and artifacts, which can negatively impact diagnostic accuracy. This study aims to develop a novel approach to improve LDCT imaging performance.
View Article and Find Full Text PDFEvol J Linn Soc
December 2024
Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002, United States.
Adaptive radiation, whereby a clade pairs rapid speciation with rapid phenotypic evolution, can result in an uneven distribution of biodiversity across the Metazoan tree. The cichlid fishes of East Africa have undergone multiple adaptive radiations within the major rift lakes. Cichlid radiations are marked by divergence across distinct habitat gradients producing many morphological and behavioural adaptations.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China. Electronic address:
While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB family in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.
Magnetic Particle Imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!