Secondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein.

Biophys J

Department of Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, University of Texas, Austin, Texas 78712, USA.

Published: October 2004

Reverse transcription of the HIV-1 RNA genome involves several complex nucleic acid rearrangement steps that are catalyzed by the HIV-1 nucleocapsid protein (NC), including for example, the annealing of the transactivation response (TAR) region of the viral RNA to the complementary region (TAR DNA) in minus-strand strong-stop DNA. We report herein single-molecule fluorescence resonance energy transfer measurements on single immobilized TAR DNA hairpins and hairpin mutants complexed with NC (i.e., TAR DNA/NC). Using this approach we have explored the conformational distribution and dynamics of the hairpins in the presence and absence of NC protein. The data demonstrate that NC shifts the equilibrium secondary structure of TAR DNA hairpins from a fully "closed" conformation to essentially one specific "partially open" conformation. In this specific conformation, the two terminal stems are "open" or unwound and the other stems are closed. This partially open conformation is arguably a key TAR DNA intermediate in the NC-induced annealing mechanism of TAR DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304694PMC
http://dx.doi.org/10.1529/biophysj.104.043083DOI Listing

Publication Analysis

Top Keywords

tar dna
20
secondary structure
12
dna hairpins
12
dna
7
tar
7
structure secondary
4
structure dynamics
4
dynamics dna
4
hairpins
4
hairpins complexed
4

Similar Publications

Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology.

Neurol Int

December 2024

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.

Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.

View Article and Find Full Text PDF

Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.

View Article and Find Full Text PDF

The GC hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.

View Article and Find Full Text PDF

The G C hexanucleotide repeat expansion in is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G C hexanucleotide repeats.

View Article and Find Full Text PDF

Examining the potential involvement of NONO in TDP-43 proteinopathy in Drosophila.

Eur J Neurosci

January 2025

Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.

The misfolding and aggregation of TAR DNA binding protein-43 (TDP-43), leading to the formation of cytoplasmic inclusions, emerge as a key pathological feature in a spectrum of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). TDP-43 shuttles between the nucleus and cytoplasm but forms nuclear bodies (NBs) in response to stress. These NBs partially colocalise with nuclear speckles and paraspeckles that sequester RNAs and proteins, thereby regulating many cellular functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!