AI Article Synopsis

Article Abstract

To measure the interaction between two lipid bilayers with an atomic force microscope one solid supported bilayer was formed on a planar surface by spontaneous vesicle fusion. To spontaneously adsorb lipid bilayers also on the atomic force microscope tip, the tips were first coated with gold and a monolayer of mercapto undecanol. Calculations indicate that long-chain hydroxyl terminated alkyl thiols tend to enhance spontaneous vesicle fusion because of an increased van der Waals attraction as compared to short-chain thiols. Interactions measured between dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and dioleoyloxypropyl trimethylammonium chloride showed the electrostatic double-layer force plus a shorter-range repulsion which decayed exponentially with a decay length of 0.7 nm for dioleoylphosphatidylcholine, 1.2 nm for dioleoylphosphatidylserine, and 0.8 nm for dioleoyloxypropyl trimethylammonium chloride. The salt concentration drastically changed the interaction between dioleoyloxypropyl trimethylammonium chloride bilayers. As an example for the influence of proteins on bilayer-bilayer interaction, the influence of the synaptic vesicle-associated, phospholipid binding protein synapsin I was studied. Synapsin I increased membrane stability so that the bilayers could not be penetrated with the tip.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304665PMC
http://dx.doi.org/10.1529/biophysj.104.044214DOI Listing

Publication Analysis

Top Keywords

atomic force
12
force microscope
12
lipid bilayers
12
dioleoyloxypropyl trimethylammonium
12
trimethylammonium chloride
12
solid supported
8
bilayers atomic
8
spontaneous vesicle
8
vesicle fusion
8
dioleoylphosphatidylcholine dioleoylphosphatidylserine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!