Link between free radicals and protein kinase C in glucose-induced alteration of vascular dilation.

Life Sci

Vascular Biology Unit, Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Avenue, Suite 2018 Gray Hall, Houston, TX 77004, USA.

Published: October 2004

Development of vascular complications in diabetes has been linked to the quality of glucose regulation and characterized by endothelial dysfunction. The exact mechanism behind vascular complications in diabetes is poorly understood. However, alteration of nitric oxide (NO) biosynthesis or bioactivity is strongly implicated and the mechanism behind such alterations is still a subject for research investigations. In the present study, we tested the hypothesis that glucose-induced attenuation of vascular relaxation involves protein kinase C (PKC)-linked generation of free radicals. Vascular relaxation to acetylcholine (ACh; 10(-9)-10(-5) M), isoproterenol (10(-9)-10(-5) M), or NO donor, sodium nitropruside (SNP; 10(-9)-10(-6) M) was determined in phenylephrine (PE, 10(-7) M) pre-constricted aortic rings from Sprague-Dawley rats in the presence or absence of 30 mM glucose (30 min), L-nitro-arginine methyl ester (L-NAME; 10(-4) M for 15 min), a NO synthase inhibitor, or xanthine (10(-5) M), a free radical generator. ACh dose-dependently caused relaxation that was attenuated by L-NAME, glucose, or xanthine. Pre-incubation (15 min) of the rings with vitamin C (10(-4) M), an antioxidant or calphostin C (10(-6) M), a PKC inhibitor, restored the ACh responses. However, high glucose had no significant effects on SNP or isoproterenol-induced relaxation. ACh-induced NO production by aortic ring was significantly reduced by glucose or xanthine. The reduced NO production was restored by pretreatment with vitamin C or calphostin C in the presence of glucose, but not xanthine. These data demonstrate that oxidants or PKC contribute to glucose-induced attenuation of vasorelaxation which could be mediated via impaired endothelial NO production and bioavailability. Thus, pathogenesis of glucose-induced vasculopathy involves PKC-coupled generation of oxygen free radicals which inhibit NO production and selectively inhibit NO-dependent relaxation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922949PMC
http://dx.doi.org/10.1016/j.lfs.2004.05.019DOI Listing

Publication Analysis

Top Keywords

free radicals
12
glucose xanthine
12
protein kinase
8
vascular complications
8
complications diabetes
8
glucose-induced attenuation
8
vascular relaxation
8
glucose
6
vascular
5
relaxation
5

Similar Publications

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Angiogenesis is an intricate pathway that involves the formation of new blood capillaries from old, functioning ones. Improper angiogenesis is a feature of numerous maladies, including malignancy and autoimmune disorders. Indole-related derivatives are believed to interfere with the mitotic spindle, inhibiting the multiplication, and invasion of cancerous human cells.

View Article and Find Full Text PDF

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

Gengnianchun Against HO-Induced Oxidative Damage in KGN Cells via miR-548m/FOXO3 Signaling.

J Cell Biochem

January 2025

Department of Integrated Traditional Chinese Medicine and Western Medicine, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.

Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before HO exposure. MRS pretreatment significantly alleviated HO-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression.

View Article and Find Full Text PDF

High taurocholic acid concentration induces ferroptosis by downregulating FTH1 expression in intrahepatic cholestasis of pregnancy.

BMC Pregnancy Childbirth

January 2025

School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.

Background: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!