Oltipraz (OPZ) is a known inducer of glutathione S-transferases and a mechanism-based inhibitor of cytochrome P450 1A2. Given the detoxification characteristics of this compound, the transcriptional effects of OPZ, along with the related naturally occurring compounds 3H-1,2-dithiole-3-thione (D3T) and sulforaphane (SF), were examined by gene expression profiling in murine BV-2 microglial cells, a neuronal macrophage cell type that mediates inflammatory responses in the brain. We show that the three compounds generate largely overlapping transcriptional changes in genes that are associated with detoxification and antioxidant responses. In addition, induction of an antioxidant/detoxification response in the microglial cells by OPZ, D3T, or SF was also able to protect cells from H2O2 -induced toxicity and to attenuate the production of reactive oxygen species in response to lipopolysaccharide treatment of cells. These results show that OPZ, D3T, and SF activate overlapping changes in gene expression and that they can regulate detoxification/antioxidant responses in multiple cells types, including cell types known to have a role in the production of oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2004.06.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!