Adiponectin has until now been considered to be synthesized and secreted exclusively by the adipose tissue, and is reported to influence energy homeostasis and insulin sensitivity. It is also known that body weight is positively correlated with increased bone mineral density and decreased fracture risk. The mechanisms explaining this relation, however, are not completely understood. We report a link between adiponectin and bone homeostasis by demonstrating transcription, translation, and secretion of adiponectin, as well as expression of its receptors, AdipoR1 and AdipoR2, in bone-forming cells. We show that adiponectin and the receptors are expressed in primary human osteoblasts from femur and tibia. The phenotype of bone cells was confirmed by the high expression levels of alkaline phosphatase, collagen type 1, osteocalcin, and CD44, and the formation of mineralization nodules. Immunostaining with monoclonal antibodies also demonstrated the presence of adiponectin in human osteosarcoma cells and normal osteoblasts. Both mRNA expression and secretion of adiponectin to the medium increased during differentiation of human osteoblasts in culture. The adiponectin mRNA level increases in osteoblasts cultured 3 and 7 days in the presence of dietary fatty acids and supplementation of culture medium with recombinant adiponectin enhances the proliferation of murine osteoblasts. The regulation and detailed function of adiponectin in bone still remains obscure, but our findings suggest a functional role in bone homeostasis. If so, adiponectin may provide an important signal linking fat and body weight to bone density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2004.06.008 | DOI Listing |
Neural Regen Res
January 2025
Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally. Physical exercise, as an effective strategy for improving general health, has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity, particularly in aging brains. However, the underlying mechanisms of exercise in cognitive aging remain largely unclear.
View Article and Find Full Text PDFJ Dev Orig Health Dis
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Keçiören, Ankara, Turkey.
Breast milk (BM) is the only source of iodine and bioactive compounds that influence growth and development in infants. The content of BM may be influenced by maternal body mass index (BMI). The aim of this study was to investigate the effect of maternal weight on BM and cord blood iodine concentrations, growth-related hormones, infant anthropometric measurements.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Department of Clinical Laboratory, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.
Objective: To investigate the allelic genotypes of the adiponectin (APN) gene polymorphisms (rs1501299) and its association with APN level among Mets patients.
Methods: A total of 410 patients with Mets and 203 healthy subjects were included in the study. The serum APN levels of the subjects were detected using enzyme-linked immunosorbent assay.
Diabetol Int
January 2025
Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.
An elevated level of saturated fatty acids (SFAs) can cause non-alcoholic fatty liver disease (NAFLD). While n-3 polyunsaturated fatty acids (PUFAs) were shown to improve NAFLD, the effects of n-6 PUFAs in the liver have not been fully elucidated. We examined the association between NAFLD and n-6 PUFAs, particularly dihomo-γ-linolenic acid (DGLA), in patients with type 2 diabetes.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Background: Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling via adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2), but the role of AdipoR-mediated signaling in glomerular injury in type 2 diabetes remains unknown.
Methods: The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1-knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!